Skip to main content

Ab Initio Simulations of Semiconductor Surfaces and Interfaces

  • Chapter
Springer Handbook of Surface Science

Part of the book series: Springer Handbooks ((SHB))

Abstract

Calculations of the electronic properties of solids and surfaces span years of research activity and have produced an enormous amount of publications over the last decades. However, only recently have quantum simulations reached the degree of accuracy to be predictable against experimental data, and this is particularly true for systems with reduced periodicity, such as surfaces, interfaces, and nanostructures. In this review, we present a survey about the characterization of low-dimensional semiconductor-based systems by ab initio density functional methods and compare them with the experimental data available.

Several computational issues afflict the description of the different systems; we will not enter into the details of the theoretical approach and of the very many refinements, which cover a broad chapter by themselves. Rather, a discriminating analysis of the single computational protocols to describe and complement specific experimental problems is presented. Prototypical examples that can be considered as templates for the specific problem, with particular emphasis on surface and interface effects, will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York 1989)

    Google Scholar 

  • A.D. Becke: Perspective: Fifty years of density-functional theory in chemical physics, J. Chem. Phys. 140, 18A301 (2014)

    Google Scholar 

  • W. Chen, A. Pasquarello: First-principles determination of defect energy levels through hybrid density functionals and GW, J. Phys.: Condens. Matter 27, 133202 (2015)

    ADS  Google Scholar 

  • V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein: First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method, J. Phys.: Condens. Matter 9(4), 767 (1997)

    ADS  Google Scholar 

  • L.A. Agapito, S. Curtarolo, M. Buongiorno Nardelli: Reformulation of DFT+U as a pseudohybrid Hubbard density functional for accelerated materials discovery, Phys. Rev. X 5, 011006 (2015)

    Google Scholar 

  • A. Janotti, D. Segev, C.G. Van de Walle: Effects of cation d states on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors, Phys. Rev. B 74, 045202 (2006)

    ADS  Google Scholar 

  • A. Catellani, A. Galli: Theoretical studies of silicon carbide surfaces, Prog. Surf. Sci. 69, 101–124 (2002)

    ADS  Google Scholar 

  • G. Cicero, A. Ferretti, A. Catellani: Surface-induced polarity inversion in ZnO nanowires, Phys. Rev. B 201304(R), 80 (2009)

    Google Scholar 

  • H.J. Monkhorst, J.D. Pack: Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188–5192 (1976)

    ADS  MathSciNet  Google Scholar 

  • R. Car, M. Parrinello: Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471–2474 (1995)

    ADS  Google Scholar 

  • M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045–1097 (1993)

    ADS  Google Scholar 

  • D. Marx, J. Hutter: Ab initio molecular dynamics: theory and implementation. In: NIC Series Vol. 3: Modern Methods and Algorithms of Quantum Chemistry – Proceedings, 2nd edn., ed. by J. Grotendorst (Forschungszentrum Juelich, Juelich 2000) pp. 329–478, NIC-Directors Ed.

    Google Scholar 

  • A. Catellani, G. Galli, F. Gygi, F. Pellacini: Influence of stress and defects on the silicon-terminated SiC(001) surface structure, Phys. Rev. B 57, 12255–12261 (1998)

    ADS  Google Scholar 

  • A. Catellani, G. Galli, F. Gygi: Reconstruction and thermal stability of the cubic SiC (001) surfaces, Phys. Rev. Lett. 77, 5090–5093 (1996)

    ADS  Google Scholar 

  • M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, A. Catellani: Ab initio simulations of homoepitaxial SiC growth, Phys. Rev. Lett. 91, 136101 (2003)

    ADS  Google Scholar 

  • D. Hamann: Generalized norm-conserving pseudopotentials, Phys. Rev. B 40, 2980–2987 (1989)

    ADS  Google Scholar 

  • J. Pollmann, P. Krüger, M. Sabisch: Atomic and electronic structure of SiC surfaces from ab-initio calculations, Phys. Status Solidi (b) 202, 421–445 (1997)

    ADS  Google Scholar 

  • C. Stampfl, W. Mannstadt, R. Asahi, A.J. Freeman: Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations, Phys. Rev. B 63, 155106 (2001)

    ADS  Google Scholar 

  • D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41, 7892–7895 (1990)

    ADS  Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof: Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  • A. Catellani, G. Galli, P.L. Rigolli: Carbon lines on the cubic SiC(001) surface, Phys. Rev. B 62, 4794–4797 (2000)

    ADS  Google Scholar 

  • F. Bernardini, V. Fiorentini, D. Vanderbilt: Accurate calculation of polarization-related quantities in semiconductors, Phys. Rev. B 63, 193201 (2001)

    ADS  Google Scholar 

  • R.O. Jones, G. Seifert: Structure and bonding in carbon clusters C14 to C24: Chains, rings, bowls, plates, and cages, Phys. Rev. Lett. 79, 443–446 (1997)

    ADS  Google Scholar 

  • J. Tersoff, D.R. Hamman: Theory of the scanning tunneling microscope, Phys. Rev. B 31, 805–813 (1985)

    ADS  Google Scholar 

  • V. Bermudez, J. Long: Characterization of reconstructed SiC(100) surfaces using soft-x-ray photoemission spectroscopy, Appl. Phys. Lett. 66, 475–478 (1995)

    ADS  Google Scholar 

  • S. Grimme: Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787–1799 (2006)

    Google Scholar 

  • G. Cicero, A. Calzolari, S. Corni, A. Catellani: Anomalous wetting layer at the Au(111) surface, J. Phys. Chem. Lett. 2, 2582–2586 (2011)

    Google Scholar 

  • A. Catellani, A. Calzolari: Functionalization of SiC(110) surfaces via porphyrin adsorption: Ab initio results, J. Phys. Chem. C 116, 886–892 (2012)

    Google Scholar 

  • A. Terentjevs, A. Catellani, D. Pendergast, G. Cicero: Importance of on-site corrections to the electronic and structural properties of InN in crystalline solid, nonpolar surface, and nanowire forms, Phys. Rev. B 82, 165307 (2010)

    ADS  Google Scholar 

  • A. Calzolari, A. Ruini, A. Catellani: Anchor group versus conjugation: Toward the gap-state engineering of functionalized ZnO(10-10) surface for optoelectronic applications, J. Am. Chem. Soc. 133, 5893–5899 (2011)

    Google Scholar 

  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009), http://www.quantum-espresso.org

    Google Scholar 

  • M.C. Righi, C.A. Pignedoli, G. Borghi, R. Di Felice, C.M. Bertoni, A. Catellani: Surface-induced stacking transition at SiC(0001), Phys. Rev. B 66, 045320 (2002)

    ADS  Google Scholar 

  • O. Madelung, U. Rössler, M. Schulz (Eds.): Landolt-Boernstein: Numerical Data and Functional Relationship in Science and Technology, New Series (Springer, Berlin 1982)

    Google Scholar 

  • F. Bechstedt, P. Kaeckell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J. Furthmueller: Polytypism and properties of silicon carbide, Phys. Status Solidi (b) 202, 35–62 (1997)

    ADS  Google Scholar 

  • G.P. Brandino, G. Cicero, B. Bonferroni, A. Ferretti, A. Calzolari, C.M. Bertoni, A. Catellani: Polarization properties of (1-100) and (11-20) SiC surfaces from first principles, Phys. Rev. B 76(8), 085322 (2007)

    ADS  Google Scholar 

  • A. Dal Corso, M. Posternak, R. Resta, A. Baldereschi: Ab initio study of piezoelectricity and spontaneous polarization in ZnO, Phys. Rev. B 50, 10715–10721 (1994)

    Google Scholar 

  • A. Fissel, U. Kaiser, K. Pfennighaus, B. Schroeter, W. Richter: Growth of 6HSiC on 6H-SiC(0001) by migration enhanced epitaxy controlled to an atomic level using surface superstructures, Appl. Phys. Lett. 68, 1204–1206 (1996)

    ADS  Google Scholar 

  • M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, A. Catellani: Combined ab initio and kinetic Monte Carlo simulations of C diffusion on the \((\sqrt3 {\times} \sqrt3)\)β-SiC(111) surface, Phys. Rev. B 71, 075303 (2005)

    ADS  Google Scholar 

  • U. Starke, J. Schardt, J. Bernhardt, M. Franke, K. Heinz: Stacking transformation from hexagonal to cubic SiC induced by surface reconstruction: A seed for heterostructure growth, Phys. Rev. Lett. 82, 2107–2110 (1999)

    ADS  Google Scholar 

  • G. Henkelman, H. Jonsson: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113, 9901 (2000)

    ADS  Google Scholar 

  • V. Derycke, P. Soukiassian, F. Amy, Y. Chabal, M. D'Angelo, H. Enriquez, M. Silly: Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization, Nat. Mater. 2, 253–258 (2003)

    ADS  Google Scholar 

  • P. Soukiassian, E. Wimmer, E. Celasco, C. Giallombardo, S. Bonanni, L. Vattuone, L. Savio, A. Tejeda, M. Silly, M. D'Angelo, F. Sirotti, M. Rocca: Hydrogen-induced nanotunnel opening within semiconductor subsurface, Nat. Commun. 4, 1–10 (2013)

    Google Scholar 

  • R.D. Felice, C.M. Bertoni, C.A. Pignedoli, A. Catellani: Hydrogen-induced surface metallization of b-SiC(100)-(3×2) revisited by density functional theory calculations, Phys. Rev. Lett. 94, 116103 (2005)

    ADS  Google Scholar 

  • X. Peng, P. Krueger, J. Pollmann: Metallization of the 3C-SiC(001)-(3x2) surface induced by hydrogen adsorption: A first-principles investigation, Phys. Rev. B 72, 245320 (2005)

    ADS  Google Scholar 

  • H. Chang, J. Wu, B. Gu, F. Liu, W. Duan: Physical origin of hydrogen-adsorption-induced metallization of the SiC surface: n-Type doping via formation of hydrogen bridge bond, Phys. Rev. Lett. 95, 196803 (2005)

    ADS  Google Scholar 

  • E. Rosso, R. Baierle, W. Orellana, R. Miwa: Hydrogen-induced nanotunnel structure on the C-terminated beta-SiC(001)-c(2 x 2) surface investigated by ab-initio calculations, Appl. Surf. Sci. 357, 1753–1757 (2015)

    ADS  Google Scholar 

  • F. Hoetzel, K. Seino, S. Chandola, E. Speiser, N. Esser, F. Bechstedt, A. Pucci: Metal-to-insulator transition in Au chains on Si(111)-5x2-Au by band filling: Infrared plasmonic signal and ab initio band structure calculation, J. Phys. Chem. Lett. 6, 3615–3620 (2015)

    Google Scholar 

  • J.N. Crain, M.D. Stiles, J.A. Stroscio, D.T. Pierce: Electronic effects in the length distribution of atom chains, Phys. Rev. Lett. 96, 156801 (2006)

    ADS  Google Scholar 

  • H.J. Snaith, L. Schmidt-Mende: Advances in liquid-electrolyte and solid-state dye-sensitized solar cells, Adv. Mater. 19, 3187–3200 (2007)

    Google Scholar 

  • M. Nunez, M. Buongiorno Nardelli: First-principles theory of metal-alkaline earth oxide interfaces, Phys. Rev. B 73, 235422 (2006)

    ADS  Google Scholar 

  • J.H. Harding, D.M. Duffy, M.L. Sushko, P.M. Rodger, D. Quigley, J.A. Elliot: Computational techniques at the organic-inorganic interface in biomineralization, Chem. Rev. 108, 4823–4854 (2008)

    Google Scholar 

  • S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher: Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly, Nature 405, 665–668 (2000)

    ADS  Google Scholar 

  • A. Calzolari, G. Cicero, C. Cavazzoni, R. Di Felice, A. Catellani, S. Corni: Hydroxyl-rich β-sheet adhesion to the gold surface in water by first-principle simulations, J. Am. Chem. Soc. 132, 4790–4795 (2010)

    Google Scholar 

  • B.R. O', M. Graetzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)

    ADS  Google Scholar 

  • B.E. Hardin, H.J. Snaith, M.D. McGehee: The renaissance of dye-sensitized solar cells, Nat. Photonics 6, 162–169 (2012)

    ADS  Google Scholar 

  • S. Schoell, M. Sachsenhauser, A. Oliveros, J. Howgate, M. Stutzmann, M. Brandt, C. Frewin, S. Saddow, I. Sharp: Organic functionalization of 3C-SiC surfaces, ACS Appl. Mater. Interfaces 5, 1393–1399 (2013)

    Google Scholar 

  • Y. Yin, A.P. Alivisatos: Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature 437, 664–670 (2005)

    ADS  Google Scholar 

  • D. Belanger, J. Pinson: Electrografting: A powerful method for surface modification, Chem. Soc. Rev. 40, 3995–4048 (2011)

    Google Scholar 

  • A. Calzolari, A. Ruini, A. Catellani: Surface effects on catechol/semiconductor interfaces, J. Phys. Chem. C 116, 17158–17163 (2012)

    Google Scholar 

  • T. Gillich, E.M. Benetti, E. Rakhmatullina, R. Konradi, W. Li, A. Zhang, A.D. Schlater, M. Textor: Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: Adsorption kinetics, surface characterization, and nonfouling properties, J. Am. Chem. Soc. 133(28), 10940–10950 (2011)

    Google Scholar 

  • D. Vogel, P. Krüger, J. Pollmann: Self-interaction and relaxation-corrected pseudopotentials for II-VI semiconductors, Phys. Rev. B 54, 5495–5511 (1996)

    ADS  Google Scholar 

  • O. Dulub, L.A. Boatner, U. Diebold: STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001)-O, (1010), and (1120) surfaces, Surf. Sci. 519(3), 201–217 (2002)

    ADS  Google Scholar 

  • P. Gopal, M. Fornari, S. Curtarolo, L.A. Agapito, L.S.I. Liyanage, M. Buongiorno Nardelli: Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: A validation of the ACBN0 functional, Phys. Rev. B 91(24), 245202–245209 (2015)

    ADS  Google Scholar 

  • M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang: Nanowire dye-sensitized solar cells, Nat. Mater. 4, 455–459 (2005)

    ADS  Google Scholar 

  • A. Catellani, G. Cicero, G. Galli: Wetting behavior of low-index cubic SiC surfaces, J. Chem. Phys. 124(2), 024707 (2006)

    ADS  Google Scholar 

  • G.F. Moore, J.D. Blakemore, R.L. Milot, J.F. Hull, H. Song, L. Cai, C.A. Schmuttenmaer, R.H. Crabtree, G.W. Brudvig: A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst, Energy Environ. Sci. 4, 2389–2392 (2011)

    Google Scholar 

  • P.G. Datskos, T. Thundat, N.V. Lavrik: Micro and Nanocantilever Sensors, Enciclopedia of Nanoscience and Nanotechnology, Vol. 5 (American Scientific Publishers, Stevenson Ranch 2004) pp. 551–560

    Google Scholar 

  • O.H. Nielsen, R.M. Martin: Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs, Phys. Rev. B 32, 3792–3805 (1985)

    ADS  Google Scholar 

  • P.G. Dacosta, O.H. Nielsen, K. Kunc: Stress theorem in the determination of static equilibrium by the density functional method, J. Phys. C 19(17), 3163 (1986)

    ADS  Google Scholar 

  • R.E. Miller, V.B. Shenoy: Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11(3), 139 (2000)

    ADS  Google Scholar 

  • F. Risplendi, A. Ricci, G. Cicero: Functionalization layer effect on the mechanical properties of silicon based micro-cantilever mass sensors: A theoretical study, Sens. Actuators B 195, 177–180 (2014)

    Google Scholar 

  • C. Ziegler: Cantilever-based biosensors, Anal. Bioanal. Chem. 379(7), 946–959 (2004)

    Google Scholar 

  • F. Risplendi, G. Cicero: Si(111) surface functionalized with H-bonded SAM: A theoretical study, Appl. Surf. Sci. 267, 17–20 (2013)

    ADS  Google Scholar 

  • A. Ricci, C. Ricciardi: A new finite element approach for studying the effect of surface stress on microstructures, Sens. Actuators A 159(2), 141–148 (2010)

    Google Scholar 

  • S. Kim, K.D. Kihm: Effect of adsorption-induced surface stress change on the stiffness of a microcantilever used as a salinity detection sensor, Appl. Phys. Lett. 93(8), 081911 (2008)

    ADS  Google Scholar 

  • Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu: Metal oxide nanostructures and their gas sensing properties: A review, Sensors 12(3), 2610 (2012)

    Google Scholar 

  • K.K. Korir, A. Catellani, G. Cicero: Ethanol gas sensing mechanism in ZnO nanowires: An ab initio study, J. Phys. Chem. C 118(42), 24533–24537 (2014)

    Google Scholar 

  • A. Tamvakos, K. Korir, D. Tamvakos, D. Calestani, G. Cicero, D. Pullini: NO2 Gas sensing mechanism of ZnO thin-film transducers: Physical experiment and theoretical correlation study, ACS Sensors 1(4), 406–412 (2016)

    Google Scholar 

  • N. Tiwale: Zinc oxide nanowire gas sensors: Fabrication, functionalisation and devices, Mater. Sci. Technol. 31(14), 1681–1697 (2015)

    Google Scholar 

  • G. Korotcenkov: Metal oxides for solid-state gas sensors: What determines our choice?, Mater. Sci. Eng.: B 139(1), 1–23 (2007)

    Google Scholar 

  • M. Batzill, U. Diebold: The surface and materials science of tin oxide, Prog. Surf. Sci. 79(2–4), 47–154 (2005)

    ADS  Google Scholar 

  • E.V. Lavrov, F. Börrnert, J. Weber: Dominant hydrogen-oxygen complex in hydrothermally grown ZnO, Phys. Rev. B 71, 035205 (2005)

    ADS  Google Scholar 

  • G.A. Shi, M. Stavola, S.J. Pearton, M. Thieme, E.V. Lavrov, J. Weber: Hydrogen local modes and shallow donors in ZnO, Phys. Rev. B 72, 195211 (2005)

    ADS  Google Scholar 

  • A. Catellani, A. Ruini, G. Cicero, A. Calzolari: First principles description of the electronic properties of doped ZnO, Phys. Status Solidi (b) 250(10), 2106–2109 (2013)

    ADS  Google Scholar 

  • F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, G. Salviati: Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures, Sci. Rep. 4, 5158 (2014)

    ADS  Google Scholar 

  • H. Lüth: Solid Surfaces, Interfaces and Thin Films (Springer, Berlin Heidelberg 2001)

    MATH  Google Scholar 

  • S.M. Sze, K.K. Ng: Physics of Semiconductor Devices (Wiley, New York 2006)

    Google Scholar 

  • A.P. Alivisatos: The use of nanocrystals in biological detection, Nat. Biotechnol. 22, 47–52 (2004)

    Google Scholar 

  • N. Tessler, V. Medvedev, M. Kazes, S.-H. Kan, U. Banin: Light-emitting diodes efficient near-infrared polymer nanocrystal, Science 295, 1506–1508 (2002)

    ADS  Google Scholar 

  • S. Coe, W.-K. Woo, M. Bawendi, V. Bulović: Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420, 800–803 (2002)

    ADS  Google Scholar 

  • I. Gur, N. Fromer, M.L. Geier, A.P. Alivisatos: Air-stable all-inorganic nanocrystal solar cells processed from solution, Science 310, 462–465 (2005)

    ADS  Google Scholar 

  • J. Schrier, D.O. Demchenko, L.-W. Wang: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications, Nano Lett. 7, 2377–2382 (2007)

    ADS  Google Scholar 

  • D. Gross, A.S. Susha, T.A. Klar, E. Da Como, A.L. Rogach, J. Feldmann: Charge separation in type-II tunneling structures of closed-packed CdTe and CdSe nanocrystals, Nano Lett. 8, 1482–1485 (2008)

    ADS  Google Scholar 

  • N.N. Hewa-Kasakarage, P.Z. El-Khoury, A.N. Tarnovsky, M. Kirsanova, I. Nemitz, A. Nemchinov, M. Zamkov: Ultrafast carrier dynamics in type II ZnSe/CdS/ZnSe nanobarbells, ACS Nano 4, 1837–1844 (2010)

    Google Scholar 

  • M. Rocca: Low-energy EELS investigation of surface electronic excitations on metals, Surf. Sci. Rep. 22, 1–71 (1995)

    ADS  Google Scholar 

  • A. Calzolari, M. Buongiorno Nardelli: Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach, Sci. Rep. 3, 2999 (2013)

    Google Scholar 

  • P. D'Amico, L. Agapito, A. Catellani, A. Ruini, S. Curtarolo, M. Fornari, M. Buongiorno Nardelli, A. Calzolari: Accurate ab initio tight-binding Hamiltonians: Effective tools for electronic transport and optical spectroscopy from first principles, Phys. Rev. B 94, 165166 (2016)

    ADS  Google Scholar 

  • M. Peressi, N. Binggeli, A. Baldereschi: Band engineering at interfaces: Theory and numerical experiments, J. Phys. D: Appl. Phys. 31(11), 1273 (1998)

    ADS  Google Scholar 

  • A. Baldereschi, S. Baroni, R. Resta: Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs, Phys. Rev. Lett. 61, 734–737 (1988)

    ADS  Google Scholar 

  • H. von Wenckstern, H. Schmidt, M. Brandt, A. Lajn, R. Pickenhain, M. Lorenz, M. Grundmann, D. Hofmann, A. Polity, B. Meyer, H. Saal, M. Binnewies, A. Borger, K.-D. Becker, V. Tikhomirov, K. Jug: Anionic and cationic substitution in ZnO, Progr. Solid State Chem. 37(2–3), 153–172 (2009)

    Google Scholar 

  • S. Kim, B.S. Kang, F. Ren, Y.W. Heo, K. Ip, D.P. Norton, S.J. Pearton: Contacts to p-type ZnMgO, Appl. Phys. Lett. 84(11), 1904–1906 (2004)

    ADS  Google Scholar 

  • L.J. Brillson, Y. Lu: ZnO Schottky barriers and Ohmic contacts, J. Appl. Phys. 109(12), 121301 (2011)

    ADS  Google Scholar 

  • N.K. Reddy, Q. Ahsanulhaq, J.H. Kim, M. Devika, Y.B. Hahn: Selection of non-alloyed ohmic contacts for ZnO nanostructure based devices, Nanotechnology 18(44), 445710 (2007)

    Google Scholar 

  • A. Catellani, A. Calzolari, A. Ruini: Effect of ultrathin gold on the Ohmic-to-Schottky transition in Al/ZnO contacts: A first-principles investigation, J. Appl. Phys. 115, 043711–043715 (2014)

    ADS  Google Scholar 

  • A. Calzolari, M. Bazzani, A. Catellani: Dipolar and charge transfer effects on the atomic stabilization of ZnO polar surfaces, Surf. Sci. 607, 181–186 (2013)

    ADS  Google Scholar 

  • M. Bazzani, A. Neroni, A. Calzolari, A. Catellani: Optoelectronic properties of Al:ZnO: Critical dosage for an optimal transparent conductive oxide, Appl. Phys. Lett. 98(12), 121907 (2011)

    ADS  Google Scholar 

  • H. Mondragón-Suárez, A. Maldonado, M. la L Olvera, A. Reyes, R. Castanedo-Pérez, G. Torres-Delgado, R. Asomoza: ZnO:Al thin films obtained by chemical spray: Effect of the Al concentration, Appl. Phys. Lett. 193, 52–59 (2002)

    Google Scholar 

  • C.S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, Z.L. Wang: ZnO Nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes, Nano Lett. 6(2), 263–266 (2006)

    ADS  Google Scholar 

  • C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang: ZnO nanowire UV photodetectors with high internal gain, Nano Lett. 7(4), 1003–1009 (2007)

    ADS  Google Scholar 

  • V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, A. Piryatinski: Single-exciton optical gain in semiconductor nanocrystals, Nature 447, 441–446 (2007)

    ADS  Google Scholar 

  • X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss: Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307, 538–544 (2005)

    ADS  Google Scholar 

  • J. Chen, L. Xu, W. Li, X. Gou: α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater. 17, 582–586 (2005)

    Google Scholar 

  • R. Yan, D. Gargas, P. Yang: Nanowire photonics, Nat. Photonics 3, 569–576 (2009)

    ADS  Google Scholar 

  • Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, P. Yang: Single-nanowire photoelectrochemistry, Nat. Nanotechnol. 11, 609–612 (2016)

    ADS  Google Scholar 

  • E.C. Garnett, P. Yang: Silicon nanowire radial p-n junction solar cells, J. Am. Chem. Soc. 130(29), 9224–9225 (2008)

    Google Scholar 

  • X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66–69 (2001)

    ADS  Google Scholar 

  • M. Zhou, H. Zhu, Y. Jiao, Y. Rao, S. Hark, Y. Liu, L. Peng, Q. Li: Optical and Electrical properties of Ga-doped ZnO nanowire arrays on conducting substrates, J. Phys. Chem. C 113(20), 8945–8947 (2009)

    Google Scholar 

  • Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinaz, C. Meinecke, M. Grundmann: Room temperature ferromagnetism in ZnO films due to defects, Appl. Phys. Lett. 92, 082508 (2008)

    ADS  Google Scholar 

  • K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, T. Fukui: GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si, Nano Lett. 10(5), 1639–1644 (2010)

    ADS  Google Scholar 

  • Y. Tak, S.J. Hong, J.S. Lee, K. Yong: Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion, J. Mater. Chem. 19, 5945–5951 (2009)

    Google Scholar 

  • L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber: Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420, 57–61 (2002)

    ADS  Google Scholar 

  • J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber: Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature 441, 489–493 (2006)

    ADS  Google Scholar 

  • J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu, X. Fan: Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method, J. Phys. Chem. B 110(30), 14685–14687 (2006)

    Google Scholar 

  • X.Q. Meng, H. Peng, Y.Q. Gai, J. Li: Influence of ZnS and MgO shell on the photoluminescence properties of ZnO core/shell nanowires, J. Phys. Chem. C 114, 1467–1471 (2010)

    Google Scholar 

  • X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, X. Wang: Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core–shell nanowires, ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015)

    Google Scholar 

  • X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, X. Wang: Ultraviolet electroluminescence from ZnS@ZnO core–shell nanowires/p-GaN introduced by exciton localization, ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016)

    Google Scholar 

  • S. Jeong, M. Choe, J.-W. Kang, M.W. Kim, W.G. Jung, Y.-C. Leem, J. Chun, B.-J. Kim, S.-J. Park: High-performance photoconductivity and electrical transport of ZnO/ZnS core/shell nanowires for multifunctional nanodevice applications, ACS Appl. Mater. Interfaces 6(9), 6170–6176 (2014)

    Google Scholar 

  • A. Catellani, A. Ruini, M. Buongiorno Nardelli, A. Calzolari: Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires, RSC Advances 5(56), 44865–44872 (2015)

    ADS  Google Scholar 

  • S.A. Maier: Plasmonics: Fundamentals and Applications (Springer Science-Business Media, New York 2007)

    Google Scholar 

  • W.A. Andrew, W.L. Barnes: Plasmonic materials, Adv. Mater. 19, 3771–3782 (2007)

    Google Scholar 

  • J. Li, S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, N. Wu: Plasmon-induced resonance energy transfer for solar energy conversion, Nat. Photonics 9(9), 601–607 (2015)

    ADS  Google Scholar 

  • H.A. Atwater, A. Polman: Plasmonics for improved photovoltaic devices, Nat. Mater. 9, 205–213 (2010)

    ADS  Google Scholar 

  • H. Kim, M. Osofsky, S.M. Prokes, O.J. Glembocki, A. Piqué: Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths, Appl. Phys. Lett. 102(17), 171103 (2013)

    ADS  Google Scholar 

  • H. Lu, B.P. Cumming, M. Gu: Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths, Opt. Lett. 40(15), 3647–3650 (2015)

    ADS  Google Scholar 

  • A. Calzolari, A. Ruini, A. Catellani: Transparent conductive oxides as near-IR plasmonic materials: The case of Al-doped ZnO derivatives, ACS Photonics 1(8), 703–709 (2014)

    Google Scholar 

  • M. Pelton, J. Aizpurua, G. Bryant: Metal-nanoparticle plasmonics, Laser Photonics Rev. 2(3), 136–159 (2008)

    ADS  Google Scholar 

  • G.V. Naik, V.M. Shalaev, A. Boltasseva: Alternative plasmonic materials: Beyond gold and silver, Adv. Mater. 25(24), 3264–3294 (2013)

    Google Scholar 

  • G.V. Naik, J. Liu, A. Kildishev, V.M. Shalaev, A. Boltasseva: Demonstration of Al:ZnO as plasmonic component for near infrared metamaterials, Proc. Natl. Am. Soc. 109(23), 8834–8838 (2012)

    ADS  Google Scholar 

  • J.H. Noh, H.S. Jung, J.-K. Lee, J.Y. Kim, C.M. Cho, J. An, K.S. Hong: Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films, J. Appl. Phys. 104(7), 073706 (2008)

    ADS  Google Scholar 

  • A. Frölich, M. Wegener: Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three dimensional infrared metamaterials, Opt. Mater. Expr. 1(5), 883–889 (2011)

    ADS  Google Scholar 

  • K. Ellmer: Past achievements and future challanges in the development of optically transparent electrodes, Nat. Photonics 6(12), 809–817 (2012)

    ADS  Google Scholar 

  • A. Catellani, A. Ruini, A. Calzolari: Optoelectronic properties and color chemistry of native point defects in Al:ZnO transparent conductive oxide, J. Mater. Chem. C 3(32), 8419–8424 (2015)

    Google Scholar 

  • T.S. Moss: The interpretation of the properties of indium antimonide, Proc. Phys. Soc. Sec. B 67(10), 775 (1954)

    ADS  Google Scholar 

  • G. Cicero, J.C. Grossman, A. Catellani, G. Galli: Water at a hydrophilic solid surface probed by ab initio molecular dynamics: inhomogeneous thin layers of dense fluid, J. Am. Chem. Soc. 127(18), 6830–6835 (2005)

    Google Scholar 

  • J.C. Grossman, E. Schwegler, E.W. Draeger, F. Gygi, G. Galli: Towards an assessment of the accuracy of density functional theory for first principles simulations of water, J. Chem. Phys. 120(1), 300–311 (2004)

    ADS  Google Scholar 

  • E. Schwegler, J.C. Grossman, F. Gygi, G. Galli: Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II, J. Chem. Phys. 121(11), 5400–5409 (2004)

    ADS  Google Scholar 

  • S.H. Lee, P.J. Rossky: A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces: A molecular dynamics simulation study, J. Chem. Phys. 100(4), 3334–3345 (1994)

    ADS  Google Scholar 

  • G. Cicero, J.C. Grossman, E. Schwegler, F. Gygi, G. Galli: Water confined in nanotubes and between graphene sheets: A first principle study, J. Am. Chem. Soc. 130(6), 1871–1878 (2008)

    Google Scholar 

  • K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.-X. Zhang, S. Cottenier: Reproducibility in density functional theory calculations of solids, Science 351(6280), aad3000 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Catellani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Calzolari, A., Cicero, G., Catellani, A. (2020). Ab Initio Simulations of Semiconductor Surfaces and Interfaces. In: Rocca, M., Rahman, T.S., Vattuone, L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-46906-1_5

Download citation

Publish with us

Policies and ethics