Skip to main content

Natural Topological Insulator Heterostructures

  • Chapter
Springer Handbook of Surface Science

Abstract

A topological insulator is a state of quantum matter that, while being an insulator in the bulk, hosts metallic topologically protected electronic states at the surface. These states open the way for realizing a number of new applications in spintronics and quantum computing. In order to take advantage of their unique properties, topological insulators should be tuned in such a way that isolated Dirac cones are located within the topological transport regime, without any scattering channels.

This chapter is devoted to natural topological heterostructures composed of different sublattices, at least one of which is a topological insulator. We demonstrate that these systems show diverse electronic properties and, depending on the structure and composition, can be topological insulators supporting Dirac surface states whose dispersion essentially depends on the surface termination, topological Weyl semimetals, or trivial band insulators.

The chapter is organized in five sections. Section 15.1 provides computational details. In Sect. 15.2, we discuss the crystal structure and electronic states in the (CIVBVI)n=1(A V2 B VI3 )m>1 superlattices. Section 15.3 is devoted to the peculiarities of the topologically protected electronic states in the (CIVBVI)n>1(A V2 B VI3 )m=1 compounds. Temperature-driven topological phase transitions in the Ge2Sb2Te5 phase-change materials are addressed in Sect. 15.4. Finally, we end with a summary and conclusions in Sect. 15.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.Z. Hasan, C.L. Kane: Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045–3067 (2010)

    ADS  Google Scholar 

  • J.E. Moore: The birth of topological insulators, Nature 464, 194 (2010)

    ADS  Google Scholar 

  • M.Z. Hasan, J.E. Moore: Three-dimensional topological insulators, Ann. Rev. Condens. Matter Phys. 2(1), 55–78 (2011)

    ADS  Google Scholar 

  • A. Bansil, H. Lin, T. Das: Colloquium: Topological band theory, Rev. Mod. Phys. 88, 021004 (2016)

    ADS  Google Scholar 

  • L. Fu, C.L. Kane, E.J. Mele: Topological insulators in three dimensions, Phys. Rev. Lett. 98, 106803 (2007)

    ADS  Google Scholar 

  • L. Fu, C.L. Kane: Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007)

    ADS  Google Scholar 

  • D. Pesin, A.H. MacDonald: Spintronics and pseudospintronics in graphene and topological insulators, Nat. Mater. 11, 409 (2012)

    ADS  Google Scholar 

  • J.C.Y. Teo, L. Fu, C.L. Kane: Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1–xSbx, Phys. Rev. B 78, 045426 (2008)

    ADS  Google Scholar 

  • X.-L. Qi, T.L. Hughes, S.-C. Zhang: Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008)

    ADS  Google Scholar 

  • H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5, 438 (2009)

    Google Scholar 

  • S.V. Eremeev, G. Bihlmayer, M. Vergniory, Y.M. Koroteev, T.V. Menshchikova, J. Henk, A. Ernst, E.V. Chulkov: Ab initio electronic structure of thallium-based topological insulators, Phys. Rev. B 83, 205129 (2011)

    ADS  Google Scholar 

  • J.E. Moore, L. Balents: Topological invariants of time-reversal-invariant band structures, Phys. Rev. B 75, 121306 (2007)

    ADS  Google Scholar 

  • C.L. Kane: An insulator with a twist, Nat. Phys. 4, 348 (2008)

    Google Scholar 

  • L. Fu, C.L. Kane: Probing neutral Majorana fermion edge modes with charge transport, Phys. Rev. Lett. 102, 216403 (2009)

    ADS  Google Scholar 

  • R. Roy: Topological phases and the quantum spin Hall effect in three dimensions, Phys. Rev. B 79, 195322 (2009)

    ADS  Google Scholar 

  • Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5, 398–402 (2009)

    Google Scholar 

  • A.A. Burkov, D.G. Hawthorn: Spin and charge transport on the surface of a topological insulator, Phys. Rev. Lett. 105, 066802 (2010)

    ADS  Google Scholar 

  • D. Culcer, E.H. Hwang, T.D. Stanescu, S. Das Sarma: Two-dimensional surface charge transport in topological insulators, Phys. Rev. B 82, 155457 (2010)

    ADS  Google Scholar 

  • M.H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim: Spin-torque generation in topological insulator based heterostructures, Phys. Rev. B 93, 125303 (2016)

    ADS  Google Scholar 

  • T. Morimoto, A. Furusaki, N. Nagaosa: Topological magnetoelectric effects in thin films of topological insulators, Phys. Rev. B 92, 085113 (2015)

    ADS  Google Scholar 

  • X.-L. Qi, T.L. Hughes, S.-C. Zhang: Fractional charge and quantized current in the quantum spin Hall state, Nat. Phys. 4, 273 (2008)

    Google Scholar 

  • R. Yoshimi, A. Tsukazaki, Y. Kozuka, J. Falson, K.S. Takahashi, J.G. Checkelsky, N. Nagaosa, M. Kawasaki, Y. Tokura: Quantum Hall effect on top and bottom surface states of topological insulator (Bi1–xSbx)2Te3 films, Nat. Commun. 6, 6627 (2015)

    ADS  Google Scholar 

  • X. Wu, Y. Hu, M. Ruan, N.K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, W.A. de Heer: Half integer quantum Hall effect in high mobility single layer epitaxial graphene, Appl. Phys. Lett. 95(22), 223108 (2009)

    ADS  Google Scholar 

  • V. Dziom, A. Shuvaev, A. Pimenov, G.V. Astakhov, C. Ames, K. Bendias, J. Böttcher, G. Tkachov, E.M. Hankiewicz, C. Brüne, H. Buhmann, L.W. Molenkamp: Observation of the universal magnetoelectric effect in a 3D topological insulator, Nat. Commun. 8, 15197 (2017)

    ADS  Google Scholar 

  • G.S. Jenkins, A.B. Sushkov, D.C. Schmadel, N.P. Butch, P. Syers, J. Paglione, H.D. Drew: Terahertz Kerr and reflectivity measurements on the topological insulator Bi2Se3, Phys. Rev. B 82, 125120 (2010)

    ADS  Google Scholar 

  • X.-L. Qi, R. Li, J. Zang, S.-C. Zhang: Inducing a magnetic monopole with topological surface states, Science 323(5918), 1184–1187 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  • Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen: Experimental realization of a three-dimensional topological insulator, Bi2Te}Te3, Science 325(5937), 178–181 (2009)

    ADS  Google Scholar 

  • T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, Q.-K. Xue: Experimental demonstration of topological surface states protected by time-reversal symmetry, Phys. Rev. Lett. 103, 266803 (2009)

    ADS  Google Scholar 

  • K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura, E.E. Krasovskii, E.V. Chulkov, H. Iwasawa, T. Okuda, K. Shimada, Y. Ueda, H. Namatame, M. Taniguchi: Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3, Phys. Rev. Lett. 105, 076802 (2010)

    ADS  Google Scholar 

  • Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, Q.-K. Xue: Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nat. Phys. 6, 584 (2010)

    Google Scholar 

  • J.-H. Song, H. Jin, A.J. Freeman: Interfacial Dirac cones from alternating topological invariant superlattice structures of Bi2Se3, Phys. Rev. Lett. 105, 096403 (2010)

    ADS  Google Scholar 

  • W. Zhang, R. Yu, H.-J. Zhang, X. Dai, Z. Fang: First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New J. Phys. 12(6), 065013 (2010)

    ADS  Google Scholar 

  • S.V. Eremeev, Y.M. Koroteev, E.V. Chulkov: Effect of the atomic composition of the surface on the electron surface states in topological insulators AV2B3VI, JETP Letters 91(8), 387–391 (2010)

    ADS  Google Scholar 

  • D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan: A tunable topological insulator in the spin helical Dirac transport regime, Nature 460, 1101 (2009)

    ADS  Google Scholar 

  • L.A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A.V. Fedorov, Y.S. Hor, R.J. Cava, A. Bansil, H. Lin, M.Z. Hasan: A topological insulator surface under strong Coulomb, magnetic and disorder perturbations, Nat. Phys. 7, 32 (2011)

    Google Scholar 

  • Y.S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J.G. Checkelsky, L.A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M.Z. Hasan, N.P. Ong, A. Yazdani, R.J. Cava: Development of ferromagnetism in the doped topological insulator Bi2–xMnxTe3, Phys. Rev. B 81, 195203 (2010)

    ADS  Google Scholar 

  • A.M. Essin, J.E. Moore, D. Vanderbilt: Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102, 146805 (2009)

    ADS  Google Scholar 

  • M. Dzero, K. Sun, V. Galitski, P. Coleman: Topological Kondo insulators, Phys. Rev. Lett. 104, 106408 (2010)

    ADS  Google Scholar 

  • J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbø, N. Nagaosa: Unconventional superconductivity on a topological insulator, Phys. Rev. Lett. 104, 067001 (2010)

    ADS  Google Scholar 

  • M. Franz: Starting a new family, Nat. Mater. 9, 536 (2010)

    ADS  Google Scholar 

  • J. Henk, A. Ernst, S.V. Eremeev, E.V. Chulkov, I.V. Maznichenko, I. Mertig: Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3, Phys. Rev. Lett. 108, 206801 (2012)

    ADS  Google Scholar 

  • S.V. Eremeev, V.N. Men'shov, V.V. Tugushev, P.M. Echenique, E.V. Chulkov: Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface, Phys. Rev. B 88, 144430 (2013)

    ADS  Google Scholar 

  • S.V. Eremeev, G. Landolt, T.V. Menshchikova, B. Slomski, Y.M. Koroteev, Z.S. Aliev, M.B. Babanly, J. Henk, A. Ernst, L. Patthey, A. Eich, A.A. Khajetoorians, J. Hagemeister, O. Pietzsch, J. Wiebe, R. Wiesendanger, P.M. Echenique, S.S. Tsirkin, I.R. Amiraslanov, J.H. Dil, E.V. Chulkov: Atom-specific spin mapping and buried topological states in a homologous series of topological insulators, Nat. Commun. 3, 635 (2012)

    ADS  Google Scholar 

  • D. Niesner, S. Otto, V. Hermann, T. Fauster, T.V. Menshchikova, S.V. Eremeev, Z.S. Aliev, I.R. Amiraslanov, M.B. Babanly, P.M. Echenique, E.V. Chulkov: Bulk and surface electron dynamics in a p-type topological insulator SnSb2Te4, Phys. Rev. B 89, 081404 (2014)

    ADS  Google Scholar 

  • G. Kresse, J. Hafner: Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48, 13115–13118 (1993)

    ADS  Google Scholar 

  • G. Kresse, J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169–11186 (1996)

    ADS  Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof: Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  • P.E. Blöchl: Projector augmented-wave method, Phys. Rev. B 50, 17953–17979 (1994)

    ADS  Google Scholar 

  • G. Kresse, D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758–1775 (1999)

    ADS  Google Scholar 

  • S. Grimme, J. Antony, S. Ehrlich, H. Krieg: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)

    ADS  Google Scholar 

  • X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, J. Zwanziger: ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180(12), 2582–2615 (2009)

    ADS  Google Scholar 

  • M. Krack: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals, Theor. Chem. Acc. 114(1), 145–152 (2005)

    Google Scholar 

  • N. Marzari, D. Vanderbilt: Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847–12865 (1997)

    ADS  Google Scholar 

  • M.P. Lopez Sancho, J.M. Lopez Sancho, J.M.L. Sancho, J. Rubio: Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F 15(4), 851–858 (1985)

    ADS  Google Scholar 

  • J. Henk, W. Schattke: A subroutine package for computing Green's functions of relaxed surfaces by the renormalization method, Comput. Phys. Commun. 77(1), 69–83 (1993)

    ADS  MATH  Google Scholar 

  • L.E. Shelimova, O.G. Karpinskii, M.A. Kretova, V.I. Kosyakov, V.A. Shestakov, V.S. Zemskov, F.A. Kuznetsov: Homologous series of layered tetradymite-like compounds in the Sb-Te and GeTe-Sb2Te3 systems, Inorg. Mater. 36(8), 768–775 (2000)

    Google Scholar 

  • T.V. Menshchikova, S.V. Eremeev, Y.M. Koroteev, V.M. Kuznetsov, E.V. Chulkov: Ternary compounds based on binary topological insulators as an efficient way for modifying the Dirac cone, JETP Letters 93(1), 15 (2011)

    ADS  Google Scholar 

  • T. Okuda, T. Maegawa, M. Ye, K. Shirai, T. Warashina, K. Miyamoto, K. Kuroda, M. Arita, Z.S. Aliev, I.R. Amiraslanov, M.B. Babanly, E.V. Chulkov, S.V. Eremeev, A. Kimura, H. Namatame, M. Taniguchi: Experimental evidence of hidden topological surface states in PbBi4Te7, Phys. Rev. Lett. 111, 206803 (2013)

    ADS  Google Scholar 

  • M. Papagno, S.V. Eremeev, J. Fujii, Z.S. Aliev, M.B. Babanly, S.K. Mahatha, I. Vobornik, N.T. Mamedov, D. Pacilé, E.V. Chulkov: Multiple coexisting Dirac surface states in three-dimensional topological insulator PbBi6Te10, ACS Nano 10(3), 3518–3524 (2016)

    Google Scholar 

  • B.A. Kuropatwa, H. Kleinke: Thermoelectric properties of stoichiometric compounds in the (SnTe)x(Bi2Te3)y system, Z. Anorg. Allg. Chem. 638(15), 2640–2647 (2012)

    Google Scholar 

  • T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu: Topological crystalline insulators in the SnTe material class, Nat. Commun. 3, 982 (2012)

    ADS  Google Scholar 

  • Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando: Experimental realization of a topological crystalline insulator in SnTe, Nat. Phys. 8, 800 (2012)

    Google Scholar 

  • L. Fu: Topological crystalline insulators, Phys. Rev. Lett. 106, 106802 (2011)

    ADS  Google Scholar 

  • S.V. Eremeev, Y.M. Koroteev, I.A. Nechaev, E.V. Chulkov: Role of surface passivation in the formation of Dirac states at polar surfaces of topological crystalline insulators: The case of SnTe(111), Phys. Rev. B 89, 165424 (2014)

    ADS  Google Scholar 

  • R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, J. Tominaga: Interfacial phase-change memory, Nat. Nanotechnol. 6, 501 (2011)

    ADS  Google Scholar 

  • T.C. Chong, L.P. Shi, R. Zhao, P.K. Tan, J.M. Li, H.K. Lee, X.S. Miao, A.Y. Du, C.H. Tung: Phase change random access memory cell with superlattice-like structure, Appl. Phys. Lett. 88(12), 122114 (2006)

    ADS  Google Scholar 

  • T.C. Chong, L.P. Shi, X.Q. Wei, R. Zhao, H.K. Lee, P. Yang, A.Y. Du: Crystalline amorphous semiconductor superlattice, Phys. Rev. Lett. 100, 136101 (2008)

    ADS  Google Scholar 

  • J. Tominaga, A.V. Kolobov, P. Fons, T. Nakano, S. Murakami: Ferroelectric order control of the Dirac-semimetal phase in GeTe-Sb2Te3 superlattices, Adv. Mater. Interfaces 1(1), 1300027 (2014)

    Google Scholar 

  • B.J. Kooi, J.T.M. De Hosson: Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x\((x=1,2,3)\) phase change material, J. Appl. Phys. 92(7), 3584–3590 (2002)

    ADS  Google Scholar 

  • I.I. Petrov, R.M. Imamov, Z.G. Pinsker: Electron-diffraction determination of the structures of Ge2Sb2Te5 and GeSb4Te7, Sov. Phys. Crystallogr. 13, 339–342 (1968)

    Google Scholar 

  • X. Yu, J. Robertson: Modeling of switching mechanism in GeSbTe chalcogenide superlattices, Sci. Rep. 5, 12612 (2015)

    ADS  Google Scholar 

  • I.V. Silkin, Y.M. Koroteev, G. Bihlmayer, E.V. Chulkov: Influence of the Ge–Sb sublattice atomic composition on the topological electronic properties of Ge2Sb2Te5, Appl. Surf. Sci. 267, 169–172 (2013)

    ADS  Google Scholar 

  • J. Kim, J. Kim, K.-S. Kim, S.-H. Jhi: Topological phase transition in the interaction of surface Dirac fermions in heterostructures, Phys. Rev. Lett. 109, 146601 (2012)

    ADS  Google Scholar 

  • S.V. Eremeev, T.V. Menshchikova, I.V. Silkin, M.G. Vergniory, P.M. Echenique, E.V. Chulkov: Sublattice effect on topological surface states in complex (SnTen>1)(Bi2Te3)m=1 compounds, Phys. Rev. B 91, 245145 (2015)

    ADS  Google Scholar 

  • A. Bera, K. Pal, D.V.S. Muthu, S. Sen, P. Guptasarma, U.V. Waghmare, A.K. Sood: Sharp Raman anomalies and broken adiabaticity at a pressure induced transition from band to topological insulator in Sb2Se3, Phys. Rev. Lett. 110, 107401 (2013)

    ADS  Google Scholar 

  • W. Li, X.-Y. Wei, J.-X. Zhu, C.S. Ting, Y. Chen: Pressure-induced topological quantum phase transition in Sb2Se3, Phys. Rev. B 89, 035101 (2014)

    ADS  Google Scholar 

  • T. Matsunaga, N. Yamada, Y. Kubota: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems, Acta Crystallogr. B 60(6), 685–691 (2004)

    Google Scholar 

  • D. Di Sante, P. Barone, R. Bertacco, S. Picozzi: Electric control of the giant Rashba effect in bulk GeTe, Adv. Mater. 25(4), 509–513 (2013)

    Google Scholar 

  • A.A. Zyuzin, A.A. Burkov: Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B 86, 115133 (2012)

    ADS  Google Scholar 

  • K.-Y. Yang, Y.-M. Lu, Y. Ran: Quantum Hall effects in a Weyl semimetal: P ossible application in pyrochlore iridates, Phys. Rev. B 84, 075129 (2011)

    ADS  Google Scholar 

  • D.T. Son, B.Z. Spivak: Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88, 104412 (2013)

    ADS  Google Scholar 

  • C.-X. Liu, P. Ye, X.-L. Qi: Chiral gauge field and axial anomaly in a Weyl semimetal, Phys. Rev. B 87, 235306 (2013)

    ADS  Google Scholar 

  • H. Wei, S.-P. Chao, V. Aji: Excitonic phases from Weyl semimetals, Phys. Rev. Lett. 109, 196403 (2012)

    ADS  Google Scholar 

  • P.E.C. Ashby, J.P. Carbotte: Magneto-optical conductivity of Weyl semimetals, Phys. Rev. B 87, 245131 (2013)

    ADS  Google Scholar 

  • K. Landsteiner: Anomalous transport of Weyl fermions in Weyl semimetals, Phys. Rev. B 89, 075124 (2014)

    ADS  Google Scholar 

  • X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011)

    ADS  Google Scholar 

  • P. Hosur: Friedel oscillations due to Fermi arcs in Weyl semimetals, Phys. Rev. B 86, 195102 (2012)

    ADS  Google Scholar 

  • T. Ojanen: Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals, Phys. Rev. B 87, 245112 (2013)

    ADS  Google Scholar 

  • A.C. Potter, I. Kimchi, A. Vishwanath: Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun. 5, 5161 (2014)

    ADS  Google Scholar 

  • Y. Zhang, D. Bulmash, P. Hosur, A.C. Potter, A. Vishwanath: Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals, Sci. Rep. 6, 23741 (2016)

    ADS  Google Scholar 

  • I.P. Rusinov, T.V. Menshchikova, I.Y. Sklyadneva, R. Heid, K.-P. Bohnen, E.V. Chulkov: Pressure effects on crystal and electronic structure of bismuth tellurohalides, New J. Phys. 18(11), 113003 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgueni V. Chulkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Eremeev, S.V., Rusinov, I.P., Chulkov, E.V. (2020). Natural Topological Insulator Heterostructures. In: Rocca, M., Rahman, T.S., Vattuone, L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-46906-1_15

Download citation

Publish with us

Policies and ethics