Skip to main content

Scanning Photoelectron Microscopy: Past, Present and Future

  • Chapter
Springer Handbook of Surface Science

Part of the book series: Springer Handbooks ((SHB))

Abstract

Adding submicrometer lateral resolution to the analytic capabilities of photoelectron spectroscopy was a milestone that opened up new opportunities to access lateral fluctuations in the chemical composition and electronic and magnetic structure of surfaces and interfaces and to explore exotic properties of nanostructured matter. To achieve a high spatial resolution while preserving the spectral resolution of this technique requires the very intense photon flux that has become available with the advent of third-generation synchrotron storage rings. The high spatial resolution of x-ray photoelectron microscopes, operated at synchrotron facilities, is achieved by either: (i) magnifying the image of the irradiated surface area using a suitable electron optical imaging system; or (ii) demagnifying the incident photon beam using x-ray photon optics. The contrast mechanisms in both instruments are based on photon absorption and the photon-induced electron emission is used to obtain spectroscopic information encoding the composition and electronic structure of the sample under investigation.

This paper offers a brief overview of the history, operational principles and potential of scanning photoelectron microscopes where the imaging is performed by scanning the sample with respect to the focused beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Kirz, C. Jacobsen: The history and future of X‑ray microscopy, J. Phys.: Conf. Ser. 186, 12001 (2009), https://doi.org/10.1088/1742-6596/186/1/012001

    Article  Google Scholar 

  • R. Falcone, C. Jacobsen, J. Kirz, S. Marchesini, D. Shapiro, J. Spence: New directions in X‑ray microscopy, Contemp. Phys. 52, 293–318 (2011), https://doi.org/10.1080/00107514.2011.589662

    Article  ADS  Google Scholar 

  • J. Stöhr: NEXAFS Spectroscopy (Springer, Berlin 1992)

    Google Scholar 

  • K. Siegbahn: From x‑ray to electron spectroscopy and new trends, J. Electron Spectrosc. Relat. Phenom. 51, 11–36 (1990)

    Google Scholar 

  • D. Attwood: Soft X‑rays and Extreme Ultraviolet Radiation: Principles and Application (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  • A.G. Michette: Optical Systems for Soft X‑rays (Plenum, New York 1986)

    Google Scholar 

  • I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C.M. Kewish, P. Mercere, C. David: High-efficiency zone-plate optics for multi-keV x‑ray focusing, J. Synchrotron Radiat. 21, 497–501 (2014)

    Google Scholar 

  • K. Yamauchi, M. Yabashi, H. Ohashi, T. Koyama, T. Ishikawa: Nanofocusing of x‑ray free-electron lasers by grazing-incidence reflective optics, J. Synchrotron Radiat. 22, 592–598 (2015), and references therein

    Google Scholar 

  • G. Margaritondo, F. Cerrina: Overview of soft-x‑ray photoemission spectromicroscopy, Nucl. Instrum. Methods Phys. Res. A 291, 26–35 (1990)

    ADS  Google Scholar 

  • E. Bauer: Surface Microscopy with Low Energy Electrons (Springer, New York 2014)

    Google Scholar 

  • C.M. Schneider, G. Schönhense: Investigating surface magnetism by means of photoexcitation electron emission microscopy, Rep. Prog. Phys. 65, R1785–R1839 (2002)

    ADS  Google Scholar 

  • M. Amati, A. Barinov, V. Feyer, L. Gregoratti, M. Al-Hada, A. Locatelli, T.O. Mentes, H. Sezen, C.M. Schneider, M. Kiskinova: Photoelectron microscopy at Elettra: Recent advances and perspectives, J. Electron Spectrosc. Relat. Phenom. 224, 59–67 (2018)

    Google Scholar 

  • C. Tusche, M. Ellguth, A. Krasyuk, A. Winkelmann, D. Kutnyakhov, P. Lushchyk, K. Medjanik, G. Schönhense, J. Kirschner: Quantitative spin polarization analysis in photoelectron emission microscopy with an imaging spin filter, Ultramicroscopy 130, 70–76 (2013)

    Google Scholar 

  • P. Dudin, P. Lacovig, C. Fava, E. Nicolini, A. Bianco, G. Cautero, A. Barinov: Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra, J. Synchrotron Radiat. 17, 445–450 (2010)

    Google Scholar 

  • J. Avila, I. Razado-Colambo, S. Lorcy, B. Lagarde, J. Giorgetta, F. Polack, M.C. Asensio: ANTARES, a scanning photoemission microscopy beamline at SOLEIL, J. Phys. Conf. Ser. 425, 192023 (2013)

    Google Scholar 

  • E. Rotenberg, A. Bostwick: microARPES and nanoARPES at diffraction-limited light sources: Opportunities and performance gains, J. Synchrotron Radiat. 21, 1048–1056 (2014)

    Google Scholar 

  • Elettra Sincrotrone Trieste: ESCA Microscopy, https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

  • Elettra Sincrotrone Trieste: Spectromicroscopy, https://www.elettra.eu/elettra-beamlines/spectromicroscopy.html

  • W. Yun, B. Lai, Z. Cai, J. Maser, D. Legnini, E. Gluskin, Z. Chen, A.A. Krasnoperova, Y. Vladimirsky, F. Cerrina, E. Di Fabrizio, M. Gentili: Nanometer focusing of hard x‑rays by phase zone plates, Rev. Sci. Instrum. 70, 2238 (1999)

    ADS  Google Scholar 

  • J. Kirz: Phase zone plates for x‑rays and the extreme uv, J. Opt. Soc. Am. 64, 301–309 (1974)

    ADS  Google Scholar 

  • B.L. Henke, E.M. Gullikson, J.C. Davis: X‑ray interactions: Photoabsorption, scattering, transmission and reflection at , , At. Data Nucl. Data Tables 54(2), 181–342 (1993)

    ADS  Google Scholar 

  • J. Maser, G. Schmahl: Coupled wave description of the diffraction by zone plates with high aspect ratios, Opt. Commun. 89, 355–362 (1992)

    ADS  Google Scholar 

  • Synchrotron SOLEIL: ANTARES, https://www.synchrotron-soleil.fr/en/beamlines/antares

  • B. Bozzini, M. Amati, L. Gregoratti, M. Kiskinova: In-situ photoelectron microspectroscopy and imaging of electrochemical processes at the electrodes of a self-driven cell, Sci. Rep. 3, 2848 (2013)

    ADS  Google Scholar 

  • G. Cautero, R. Sergo, L. Stebel, P. Lacovig, P. Pittana, M. Predonzani, S. Carrato: A two-dimensional detector for pump-and-probe and time resolved experiments, Nucl. Instrum. Methods Phys. Res. A 595, 447–459 (2008)

    ADS  Google Scholar 

  • S. Gunther, A. Kolmakov, J. Kovac, M. Kiskinova: Artefact formation in scanning photoelectron emission microscopy, Ultramicroscopy 75, 35–51 (1998)

    Google Scholar 

  • B. Bozzini, B. Alemán, M. Amati, M. Boniardi, V. Caramia, G. Giovannelli, L. Gregoratti, M. Abyaneh Kazemian: Novel insight into bronze disease gained by synchrotron-based photoelectron spectro-microscopy, in support of electrochemical treatment strategies, Stud. Conserv. 9, 465–473 (2016)

    Google Scholar 

  • A. Böttcher, U. Starke, H. Conrad, R. Blume, H. Niehus, L. Gregoratti, B. Kaulich, A. Barinov, M. Kiskinova: Spectral and spatial anisotropy of the oxide growth on Ru(0001), J Chem. Phys. 117, 8104 (2002)

    ADS  Google Scholar 

  • R. Blume, H. Niehus, H. Conrad, A. Böttcher, L. Aballe, L. Gregoriatti, A. Barinov, M. Kiskinova: Identification of subsurface oxygen species created during oxidation of Ru(0001), J. Phys. Chem. B 109, 14052–14058 (2005)

    Google Scholar 

  • P. Dudin, A. Barinov, L. Gregoratti, M. Kiskinova, F. Esch, C. Dri, C. Africh, G. Comelli: Initial oxidation of a Rh(110) surface using atomic or molecular oxygen and reduction of the surface oxide by hydrogen, J. Phys. Chem. B 109, 13649–13655 (2005)

    Google Scholar 

  • P. Dudin, A. Barinov, M. Dalmiglio, L. Gregoratti, M. Kiskinova, A. Goriachko, H. Over: Nanoscale morphology and oxidation of ion-sputtered Rh(110) and Ru(0001), J. Electron Spectrosc. Relat. Phenom. 166, 89–93 (2008)

    Google Scholar 

  • P. Melpignano, A. Baron-Toaldo, V. Biondo, S. Priante, R. Zamboni, M. Murgia, S. Caria, L. Gregoratti, A. Barinov, M. Kiskinova: Mechanism of dark-spot degradation of organic light-emitting devices, Appl. Phys. Lett. 86, 41105 (2005)

    Google Scholar 

  • S. Gardonio, L. Gregoratti, P. Melpignano, L. Aballe, V. Biondo, R.M. Murgia, S. Caria, M. Kiskinova: Degradation of organic light-emitting diodes under different environment at high drive conditions, Org. Electron. 8, 37–43 (2007)

    Google Scholar 

  • S. Gardonio, L. Gregoratti, D. Scaini, C. Castellarin-Cudia, P. Dudin, P. Melpignano, V. Biondo, R. Zamboni, S. Caria, M. Kiskinova: Characterization of indium tin oxide surfaces after KOH and HCl treatments, Org. Electron. 8, 253–261 (2008)

    Google Scholar 

  • A. Barinov, H. Üstünel, S. Fabris, L. Gregoratti, L. Aballe, P. Dudin, S. Baroni, M. Kiskinova: Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces, Phys. Rev. Lett. 99, 046803 (2007)

    ADS  Google Scholar 

  • A. Barinov, L. Gregoratti, P. Dudin, S. La Rosa, M. Kiskinova: Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: Defects and oxygen bonding, Adv. Mater. 21, 1916–1920 (2009)

    Google Scholar 

  • F. Jabeen, S. Rubini, F. Martelli, A. Franciosi, A. Kolmakov, L. Gregoratti, M. Amati, A. Barinov, A. Goldoni, M. Kiskinova: Contactless monitoring of the diameter-dependent conductivity of GaAs nanowires, Nano Res. 3, 706–713 (2010)

    Google Scholar 

  • C. Struzzi, D. Erbahar, M. Scardamaglia, M. Amati, L. Gregoratti, M.J. Lagos, G. Tendeloo, R. Snyders, C. Ewels, C. Bittencourt: Selective decoration of isolated carbon nanotubes by potassium evaporation: Scanning photoemission microscopy and density functional theory, J. Mater. Chem. C 3(11), 2518–2527 (2015)

    Google Scholar 

  • M. Scardamaglia, C. Struzzi, F.J. Aparicio Rebollo, P. De Marco, P.R. Mudimela, J. Colomer, M. Amati, L. Gregoratti, L. Petaccia, R. Snyders, C. Bittencourt: Tuning electronic properties of carbon nanotubes by nitrogen grafting: Chemistry and chemical stability, Carbon 83, 118–127 (2015)

    Google Scholar 

  • M. Scardamaglia, B. Aleman, M. Amati, C. Ewels, P. Pochet, N. Reckinger, J. Colomer, T. Skaltsas, N. Tagmatarchis, R. Snyders, L. Gregoratti, C. Bittencourt: Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species, Carbon 73, 371–381 (2014)

    Google Scholar 

  • M. Scardamaglia, M. Amati, B. Llorente, P. Mudimela, J. Colomer, J. Ghijsen, C. Ewels, R. Snyders, L. Gregoratti, C. Bittencourt: Nitrogen ion casting on vertically aligned carbon nanotubes: Tip and sidewall chemical modification, Carbon 77, 319–328 (2014)

    Google Scholar 

  • P. Gondoni, P. Mazzolini, V. Russo, M. Diani, M. Amati, L. Gregoratti, V. De Renzi, G.C. Gazzadi, J. Martí-Rujas, A. Li Bassi, C.S. Casari: Tuning electrical properties of hierarchically assembled Al-doped ZnO nanoforests by room temperature pulsed laser deposition, Thin Solid Films 594(Part A), 12–17 (2015)

    ADS  Google Scholar 

  • H. Yuan, Z. Liu, G. Xu, B. Zhou, S. Wu, D. Dumcenco, K. Yan, Y. Zhang, S. Mo, P. Dudin, V. Kandyba, M. Yablonskikh, A. Barinov, Z. Shen, S. Zhang, Y. Huang, X. Xu, Z. Hussain, H.Y. Hwang, Y. Cui, Y. Chen: Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit, Nano Lett. 16, 4738–4745 (2016)

    ADS  Google Scholar 

  • W. Jin, P. Yeh, N. Zaki, D. Zhang, J.T. Liou, J.T. Sadowski, A. Barinov, M. Yablonskikh, J.I. Dadap, P. Sutter, I.P. Herman, R.M. Osgood Jr.: Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy, Phys. Rev. B 91, 121409(R) (2015)

    ADS  Google Scholar 

  • N.R. Wilson, P.V. Nguyen, K. Seyler, P. Rivera, A.J. Marsden, Z.P.L. Laker, G.C. Constantinescu, V. Kandyba, A. Barinov, N.D.M. Hine, X. Xu, D.H. Cobden: Determination of band offsets, hybridization, and exciton binding in 2-D semiconductor heterostructures, Sci. Adv. 8, e1601832 (2017)

    ADS  Google Scholar 

  • M. Amati, M. Kazemian Abyaneh, L. Gregoratti: Dynamic high pressure: A novel approach toward near ambient pressure photoemission spectroscopy and spectromicroscopy, J. Instrum. 8, T05001 (2013), and references therein

    Google Scholar 

  • B. Bozzini, M. Amati, L. Gregoratti, C. Mele, M. Abyaneh, M. Prasciolu, M. Kiskinova: In-situ photoelectron microspectroscopy during the operation of a single-chamber SOFC, Electrochem. Commun. 24, 104–107 (2012)

    Google Scholar 

  • S.K. Eriksson, M. Hahlin, J.M. Kahk, I.J. Villar-Garcia, M.J. Webb, H. Grennberg, R. Yakimova, H. Rensmo, K. Edström, A. Hagfeldt, H. Siegbahn, M.O.M. Edwards, P.G. Karlsson, K. Backlund, J. Åhlund, D.J. Payne: A versatile photoelectron spectrometer for pressures up to 30 mbar, Rev. Sci. Instrum. 85, 075119 (2014)

    ADS  Google Scholar 

  • A. Kolmakov, D.A. Dikin, L.J. Cote, J. Huang, M.K. Abyaneh, M. Amati, L. Gregoratti, S. Gunther, M. Kiskinova: Graphene oxide windows for in situ environmental cell photoelectron spectroscopy, Nat. Nanotechnol. 6, 651–657 (2011)

    ADS  Google Scholar 

  • J. Kraus, R. Reichelt, S. Günther, L. Gregoratti, M. Amati, M. Kiskinova, A. Yulaev, I. Vlassiouk, A. Kolmakov: Photoelectron spectroscopy of wet and gaseous samples through graphene membranes, Nanoscale 6, 14394 (2014)

    ADS  Google Scholar 

  • A. Kolmakov, L. Gregoratti, M. Kiskinova, S. Günther: Recent approaches for bridging the pressure gap in photoelectron microspectroscopy, Top. Catal. 59, 448–468 (2016)

    Google Scholar 

  • M. Dalmiglio, M. Amati, L. Gregoratti, T.O. Menteş, M.A. Niño, L. Felisari, M. Kiskinova: Oxidation of supported PtRh particles: Size and morphology effects, J. Phys. Chem. C 114, 16885–16891 (2010)

    Google Scholar 

  • P. Dudin, A. Barinov, L. Gregoratti, D. Scaini, Y.B. He, H. Over, M. Kiskinova: MgO-supported rhodium particles and films: Size, morphology, and reactivity, J. Phys. Chem. C 112, 9040–9044 (2008)

    Google Scholar 

  • T.L. Barr: An ESCA study of the termination of the passivation of elemental metals, J. Phys. Chem. 82, 1801–1810 (1978)

    Google Scholar 

  • M. Peuckert: A comparison of thermally and electrochemically prepared oxidation adlayers on rhodium: Chemical nature and thermal stability, Surf. Sci. 141, 500–514 (1984)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexei Barinov or Luca Gregoratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Amati, M., Barinov, A., Gregoratti, L., Sezen, H., Kiskinova, M. (2020). Scanning Photoelectron Microscopy: Past, Present and Future. In: Rocca, M., Rahman, T.S., Vattuone, L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-46906-1_14

Download citation

Publish with us

Policies and ethics