Skip to main content

Presentation of Collapse Models

  • Chapter
  • First Online:
  • 849 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 198))

Abstract

The Ghirardi-Rimini-Weber (GRW) model of wave function collapse was successful in giving a solution to the measurement problem in quantum mechanics. Despite this, it lacked two desirable features—one mathematical and one physical—for a collapse model. The mathematical aspect of the GRW model that one would like to improve is its lacking of a unified description in terms of an equation for the wave function. On the physical side, the GRW model uses the first quantization language, and does not preserve the symmetry properties of indentical particles wave functions  [1]. In 1990 Ghirardi, Rimini and Pearle took the desired step forward devising the Continuos Spontaneous Localisations (CSL) model  [2]. They considered collapses to be driven by continuous stochastic processes (instead of having discrete collapses like in GRW), that allowed to describe the collapse dynamics by a stochastic Schrödinger equation. Moreover, the CSL model relies on the second quantization formalism, and correctly describes ensembles of identical particles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  2. G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Diósi, Phys. Rev. A 40, 1165 (1989).

    Article  ADS  Google Scholar 

  4. L. Diósi, Phys. Rev. A 42, 5086 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  5. L. P. Hughston, Proc. Roy. Soc. London Ser. A 452, 953 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Benatti, G. C. Ghirardi, A. Rimini, and T. Weber, Il Nuovo Cimento B 101, 333 (1988).

    Article  ADS  Google Scholar 

  7. S. L. Adler, J. Phys. A 35, 841 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Bassi, E. Ippoliti, Phys. Rev. A 69, 012105 (2004).

    Article  ADS  Google Scholar 

  9. A. Bassi and L. Ferialdi, Phys. Rev. A 80, 012116 (2009).

    Article  ADS  Google Scholar 

  10. L. Ferialdi and A. Bassi, Phys. Rev. A 86, 022108 (2012).

    Article  ADS  Google Scholar 

  11. N. Gisin, Helv. Phys. Acta 62, 363 (1989).

    MathSciNet  Google Scholar 

  12. A. Bassi and G. Ghirardi, Phys. Rep. 379, 257 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013).

    Article  ADS  Google Scholar 

  14. M. Toroš, A. Bassi, J. Phys. 51, 115302 (2016).

    ADS  Google Scholar 

  15. S. L. Adler, J. Phys. A 40, 2935 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Smirne and A. Bassi, Sci. Rep. 5, 12518 (2015).

    Article  ADS  Google Scholar 

  17. S.L. Adler and A. Bassi, J. Phys. A 40 15083, (2007).

    Article  ADS  MathSciNet  Google Scholar 

  18. S.L. Adler and A. Bassi, J. Phys. A 41, 395308 (2008).

    Article  MathSciNet  Google Scholar 

  19. R. Penrose, Gen. Relativ. Gravit. 28, 581 (1996).

    Article  ADS  Google Scholar 

  20. L. Diósi, J. Phys. A 40, 2989 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Diósi, New J. Phys. 16, 105006 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  22. G. C. Ghirardi, R. Grassi, and A. Rimini, Phys. Rev. A 42, 1057 (1990).

    Article  ADS  Google Scholar 

  23. M. Bahrami, A. Smirne, A. Bassi, Phys. Rev. A 90, 062105 (2014).

    Article  ADS  Google Scholar 

  24. A. Bassi, D.-A. Deckert, L. Ferialdi, Europhys. Lett. 92, 50006 (2010).

    Article  ADS  Google Scholar 

  25. A. Bassi, J. Phys. A 38, 3173 (2005).

    Article  MathSciNet  Google Scholar 

  26. A. Bassi and L. Ferialdi, Phys. Rev. Lett. 103, 050403 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  27. L. Ferialdi and A. Bassi, Phys. Rev. Lett. 108, 170404 (2012).

    Article  ADS  Google Scholar 

  28. L. Diósi, L. Ferialdi, Phys. Rev. Lett. 113, 200403 (2014).

    Article  ADS  Google Scholar 

  29. L. Ferialdi, Phys. Rev. Lett. 116, 120402 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Ferialdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferialdi, L. (2021). Presentation of Collapse Models. In: Allori, V., Bassi, A., Dürr, D., Zanghi, N. (eds) Do Wave Functions Jump? . Fundamental Theories of Physics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-030-46777-7_4

Download citation

Publish with us

Policies and ethics