Skip to main content

New Avenues for Testing Collapse Models

  • Chapter
  • First Online:
Do Wave Functions Jump?

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 198))

  • 866 Accesses

Abstract

There is an increasing interest in developing experiments aimed at testing collapse models, in particular the Continuous Localization Model (CSL), the natural evolution of the GRW model initially proposed by Ghirardi et al. [1,2,3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986).

    Google Scholar 

  2. G.C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Bassi, and G. C. Ghirardi, Phys. Rep. 379, 257 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013).

    Article  ADS  Google Scholar 

  5. B. Collett and P. Pearle, Found. Phys. 33, 1495 (2003).

    Article  MathSciNet  Google Scholar 

  6. S.L. Adler, J. Phys. A 38, 2729 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  7. S.L. Adler, J. Phys. A 40, 2935 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter and M. Arndt, Rev. Mod. Phys. 84, 157 (2012).

    Article  ADS  Google Scholar 

  9. M. Bahrami, M. Paternostro, A. Bassi, and H. Ulbricht, Phys. Rev. Lett. 112, 210404 (2014).

    Article  ADS  Google Scholar 

  10. S. Nimmrichter, K. Hornberger, and K. Hammerer, Phys. Rev. Lett. 113, 020405 (2014).

    Article  ADS  Google Scholar 

  11. S. Bera, B. Motwani, T.P. Singh, and H. Ulbricht, Sci. Rep. 5, 7664 (2015).

    Article  ADS  Google Scholar 

  12. L. Diosi, Phys. Rev. Lett. 114, 050403 (2015).

    Article  ADS  Google Scholar 

  13. D. Goldwater, M. Paternostro, and P.F. Barker, Phys. Rev. A 94, 010104 (2016).

    Article  ADS  Google Scholar 

  14. A. Vinante, M. Bahrami, A. Bassi, O. Usenko, G. Wijts, and T.H. Oosterkamp, Phys. Rev. Lett. 116, 090402 (2016).

    Article  ADS  Google Scholar 

  15. A. Vinante, R. Mezzena, P. Falferi, M. Carlesso, and A. Bassi, Phys. Rev. Lett. 119, 110401 (2017).

    Article  ADS  Google Scholar 

  16. D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and Albert Schliesser, Nature Phys. 15, 745 (2019).

    Article  ADS  Google Scholar 

  17. M. Carlesso, A. Vinante, and A. Bassi, Phys. Rev. A 98, 022122 (2018).

    Article  ADS  Google Scholar 

  18. A. Vinante, M. Carlesso, A. Bassi, A. Chiasera, S. Varas, P. Falferi, B. Margesin, R. Mezzena, H. Ulbricht, arXiv:2002.09782

  19. B. Schrinski, B. A. Stickler, and K. Hornberger, J. Opt. Soc. Am. B 34, C1 (2017).

    Article  Google Scholar 

  20. M. Carlesso, M. Paternostro, H. Ulbricht, A. Vinante, A. Bassi, New J. Phys. 20, 083022 (2018).

    Article  ADS  Google Scholar 

  21. M. Carlesso, A. Bassi, P. Falferi, and A. Vinante, Phys. Rev. D 94, 124036 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288(1986).

    Article  ADS  Google Scholar 

  23. W. Paul, Rev. Mod. Phys. 62, 531 (1990).

    Article  ADS  Google Scholar 

  24. A. Vinante, A. Pontin, M. Rashid, M. Toroš, P.R. Barker, H. Ulbricht, Phys. Rev. A 100, 012119(2019).

    Article  ADS  Google Scholar 

  25. A. Pontin, N.P. Bullier, M. Toroš, and P. Barker, Phys. Rev. Research 2, 023349 (2020).

    Google Scholar 

  26. B.R. Slezak, C.W. Lewandowski, J-F. Hsu and B. D’Urso, New J. Phys. 20, 063028 (2018).

    Article  ADS  Google Scholar 

  27. Di Zheng et al., Phys. Rev. Research 2, 013057 (2020).

    Google Scholar 

  28. O. Romero-Isart, L. Clemente, C. Navau, A. Sanchez, and J.I. Cirac, Phys. Rev. Lett. 109, 147205 (2012).

    Article  ADS  Google Scholar 

  29. B. van Waarde, The lead zeppelin: a force sensor without a handle, PhD Thesis, Leiden University (2016).

    Google Scholar 

  30. J. Prat-Camps, C. Teo, C.C. Rusconi, W. Wieczorek, and O. Romero-Isart, Phys. Rev. Appl. 8, 034002 (2017).

    Article  ADS  Google Scholar 

  31. C. Timberlake, G. Gasbarri, A. Vinante, A. Setter, H. Ulbricht, Appl. Phys. Lett. 115, 224101 (2019).

    Google Scholar 

  32. A. Vinante, P. Falferi, G. Gasbarri, A. Setter, C. Timberlake, H. Ulbricht, Phys. Rev. Applied 13, 064027 (2020)

    Google Scholar 

  33. S.L. Adler and A. Vinante, Phys. Rev. A 97, 052119 (2018).

    Article  ADS  Google Scholar 

  34. M. Bahrami, Phys. Rev. A 97, 052118 (2018).

    Article  ADS  Google Scholar 

  35. S.L. Adler, A. Bassi, M. Carlesso, and A. Vinante, Phys. Rev. A 99, 103001 (2019).

    Google Scholar 

  36. S.L. Adler, A. Bassi, J. Phys. A 40, 15083 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  37. S.L. Adler, A. Bassi, S. Donadi, J. Phys. A 46, 245304 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Carlesso, L. Ferialdi, A. Bassi, Eur. Phys. J. D 72, 159 (2018).

    Article  ADS  Google Scholar 

  39. A. Tilloy and T.M. Stace, Phys. Rev. Lett. 123, 080402 (2019).

    Article  ADS  Google Scholar 

  40. See URL https://cuore.lngs.infn.it/

  41. F. Pobell, Matter and Methods at Low Temperatures, 3rd ed.(Springer, Berlin, 2007).

    Book  Google Scholar 

  42. R. Mishra, A. Vinante, T.P. Singh, Phys. Rev. D 98 052121 (2018).

    Article  ADS  Google Scholar 

  43. F. Lalöe, W.J. Mullin, and P. Pearle, Phys. Rev A 90, 052119 (2014).

    Article  ADS  Google Scholar 

  44. M. Bilardello, S. Donadi, A. Vinante, and A. Bassi, Physica A 462, 764 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  45. T. Kovachy, J.M. Hogan, A. Sugarbaker, S.M. Dickerson, C.A. Donnelly, C. Overstreet, and M.A. Kasevich, Phys. Rev. Lett. 114, 143004 (2015).

    Article  ADS  Google Scholar 

  46. S.L. Adler and A. Bassi, J. Phys. A 40, 15083 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Bassi and L. Ferialdi, Phys. Rev. A 80, 012116 (2009)

    Article  ADS  Google Scholar 

  48. M. Toro\(\check{\rm s}\), G. Gasbarri, and A. Bassi, Phys. Lett. A 381, 3921 (2017)

    Google Scholar 

  49. M. Carlesso, L. Ferialdi, A. Bassi, Eur. Phys. J. D 72, 159 (2018)

    Article  ADS  Google Scholar 

  50. A. Smirne and A. Bassi, Sci. Rep. 5, 12518 (2015).

    Article  ADS  Google Scholar 

  51. M. Toro\(\check{\rm s}\), G. Gasbarri, and A. Bassi, Phys. Lett. A 381, 3921 (2017).

    Google Scholar 

  52. J. Nobakht, M. Carlesso, S. Donadi, M. Paternostro, and A. Bassi, Phys. Rev. A 98, 042109 (2018).

    Article  ADS  Google Scholar 

  53. H. Pino, J. Prat-Camps, K. Sinha, B. P. Venkatesh, and O. Romero-Isart, Quantum Sci. Technol. 3, 025001 (2018).

    Google Scholar 

  54. J. Bateman, S. Nimmrichter, K. Hornberger, and H. Ulbricht, Nat. Commun. 5, 4788 (2014).

    Article  ADS  Google Scholar 

  55. C. Wan, M. Scala, G. W. Morley, ATM A. Rahman, H. Ulbricht, J. Bateman, P. F. Barker, S. Bose, and M. S. Kim, Phys. Rev. Lett. 117, 143003 (2016).

    Article  ADS  Google Scholar 

  56. R. Kaltenbaek, et al. EPJ Quantum Technol. 3, 5 (2016).

    Article  Google Scholar 

  57. M. Toro\(\check{\rm s}\), and A. Bassi, J. Phys. A 51, 115302 (2018).

    Google Scholar 

  58. C. Gardiner, and P. Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Vol. 56. Springer Science and Business Media (2004).

    Google Scholar 

  59. H. P. Breuer, and F. Petruccione. The theory of open quantum systems. Oxford University Press (2002).

    Google Scholar 

  60. M. Bilardello, A. Trombettoni, and A. Bassi, Phys. Rev. A 95, 032134 (2017).

    Article  ADS  Google Scholar 

  61. M. Bahrami, A. Smirne, and A. Bassi, Phys. Rev. A 90, 062105 (2014).

    Article  ADS  Google Scholar 

  62. M. Bahrami, A. Bassi, and H. Ulbricht, Phys. Rev, A 89, 032127 (2014).

    Google Scholar 

  63. S. Sturm, F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel, and K. Blaum, Nature 506, 467 (2014).

    Article  ADS  Google Scholar 

  64. R. Tumulka, J. Stat. Phys 125, 821 (2006).

    Article  ADS  Google Scholar 

  65. D. Bedingham, Detlef Dürr, G.C. Ghirardi, S. Goldstein, R. Tumulka, and N. Zanghí, J. Stat. Phys 154, 623 (2014).

    Google Scholar 

  66. C. Jones, T. Guaita, and A. Bassi, arXiv:1907.02370 (2019).

  67. M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, and T. W. Hänsch, Phys. Rev. Lett. 72, 328 (1994).

    Article  ADS  Google Scholar 

  68. E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar et al., preprint Nature Photonics 13, 714–719 (2019).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the EU project TEQ (grant agreement 766900). We would like to thank our collaborators, discussion and debating partners on the topic of experimental testing collapse models for many enlightening discussions over the years: Angelo Bassi, Steve Adler, Mauro Paternostro, TP Singh, Marko Toro\({\check{\mathrm s}}\), Matteo Carlesso, Giulio Gasbarri, Sandro Donadi, Luca Ferialdi, Marco Bilardello, Catalina Curceanu, Andrew Briggs, Caslav Bruckner, Markus Arndt, Daniel Bedingham, Ward Stuyve, Kinjalk Lochan, Michael Drewsen, Peter F. Barker, Antonio Pontin, Anis Rahman, James Bateman, Sougato Bose, Myungshik Kim, Mohammad Bahrami, Stefan Nimmrichter, Klaus Hornberger, Andrew Steane, Oriol Romero-Isart and Tjerk Oosterkamp. The paper is dedicated to the late Gian Carlo Ghirardi, who had a great idea and fought for it all his life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Vinante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinante, A., Ulbricht, H. (2021). New Avenues for Testing Collapse Models. In: Allori, V., Bassi, A., Dürr, D., Zanghi, N. (eds) Do Wave Functions Jump? . Fundamental Theories of Physics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-030-46777-7_29

Download citation

Publish with us

Policies and ethics