Skip to main content

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

The radiation field in space is highly variable in time and space. Different sources contribute to the total exposure. In interplanetary space, the field is dominated by the omni-present galactic cosmic radiation (GCR) and sporadic solar particle events (SPE) can contribute. On the International Space Station (ISS) in low Earth orbit (LEO), on the other hand, the contribution of SPE can be neglected and GCR are modulated along the station’s trajectory due to the shielding effect of the geomagnetic field against charged particles. On planetary surfaces, for instance, on Mars, albedo particles from underground and secondary particles from interactions with the atmosphere, if present, are added to the radiation field. Secondary particles, especially neutrons, can contribute significantly to the exposure. In all cases, the field can be further modified by the potential shielding environment and the resulting particle fluxes lead to the exposure of humans under the given conditions. The exposure is calculated as the energy deposition in tissue weighted with corresponding quality factors or relative biological effectiveness and organ weighting factors. In most cases, if measured, the dose rate is determined from the energy deposition in silicon detectors and corresponding corrections have to be applied to estimate the dose in tissue. Additionally, self-shielding of the body has to be taken into account if organ doses are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Borisov S, Bottai S, Bruno A, Cafagna F, Campana D, Carbone R, Carlson P, Casolino M, Castellini G, Consiglio L, De Pascale MP, De Santis C, De Simone N, Di Felice V, Galper AM, Gillard W, Grishantseva L, Jerse G, Karelin AV, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malakhov V, Malvezzi V, Marcelli L, Mayorov AG, Menn W, Mikhailov VV, Mocchiutti E, Monaco A, Mori N, Nikonov N, Osteria G, Palma F, Papini P, Pearce M, Picozza P, Pizzolotto C, Ricci M, Ricciarini SB, Rossetto L, Sarkar R, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Wu J, Zampa G, Zampa N, Zverev VG (2011) PAMELA measurements of cosmic-ray proton and helium spectra. Science 332(6025):69–72

    CAS  PubMed  Google Scholar 

  • Aguilar M, Aisa D, Alpat B, Alvino A, Ambrosi G, Andeen K, Arruda L, Attig N, Azzarello P, Bachlechner A (2015a) Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 115(21):211101

    CAS  PubMed  Google Scholar 

  • Aguilar M, Aisa D, Alpat B, Alvino A, Ambrosi G, Andeen K, Arruda L, Attig N, Azzarello P, Bachlechner A (2015b) Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international Space Station. Phys Rev Lett 114(17):171103

    CAS  PubMed  Google Scholar 

  • Badhwar GD, Atwell W, Reitz G, Beaujean R, Heinrich W (2002) Radiation measurements on the Mir Orbital Station. Radiat Meas 35(5):393–422

    CAS  PubMed  Google Scholar 

  • Baker DN, Panasyuk MI (2017) Discovering Earth’s radiation belts. Phys Today 70(12):46–51

    Google Scholar 

  • Baker D, Erickson P, Fennell J, Foster J, Jaynes A, Verronen P (2018) Space weather effects in the Earth’s radiation belts. Space Sci Rev 214(1):17

    Google Scholar 

  • Band D, Matteson J, Ford L, Schaefer B, Palmer D, Teegarden B, Cline T, Briggs M, Paciesas W, Pendleton G (1993) BATSE observations of gamma-ray burst spectra. I-spectral diversity. Astrophys J 413:281–292

    CAS  Google Scholar 

  • Benton EV (1984) Summary of current radiation dosimetry results on manned spacecraft. Adv Space Res 4(10):153–160

    CAS  PubMed  Google Scholar 

  • Benton EV, Henke RP (1983) Radiation exposures during space flight and their measurement. Adv Space Res 3(8):171–185

    CAS  PubMed  Google Scholar 

  • Berger T (2008) Radiation dosimetry onboard the international Space Station ISS. Z Med Phys 18(4):265–275

    PubMed  Google Scholar 

  • Berger T, Hajek M (2008) TL-efficiency—overview and experimental results over the years. Radiat Meas 43(2):146–156

    CAS  Google Scholar 

  • Berger T, Hajek M, Summerer L, Vana N, Akatov Y, Shurshakov V, Arkhangelsky V (2004) Austrian dose measurements onboard Space Station MIR and the international Space Station—overview and comparison. Adv Space Res 34(6):1414–1419

    CAS  PubMed  Google Scholar 

  • Berger T, Bilski P, Hajek M, Puchalska M, Reitz G (2013) The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure. Radiat Res 180(6):622–637

    CAS  PubMed  Google Scholar 

  • Berger T, Burmeister S, Matthiä D, Przybyla B, Reitz G, Bilski P, Hajek M, Sihver L, Szabo J, Ambrozova I (2017) DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus laboratory of the ISS in the years 2009–2016. J Space Weather Space Clim 7:A8

    Google Scholar 

  • Berger T, Marsalek K, Aeckerlein J, Hauslage J, Matthiä D, Przybyla B, Rohde M, Wirtz M (2019) The German Aerospace Center M-42 radiation detector—a new development for applications in mixed radiation fields. Rev Sci Instrum 90(12):125115

    CAS  PubMed  Google Scholar 

  • Blasi P (2013) The origin of galactic cosmic rays. Astron Astrophys Rev 21(1):70

    Google Scholar 

  • Boezio M, Carlson P, Francke T, Weber N, Suffert M, Hof M, Menn W, Simon M, Stephens SA, Bellotti R, Cafagna F, Castellano M, Circella M, De Marzo C, Finetti N, Papini P, Piccardi S, Spillantini P, Ricci M, Casolino M, De Pascale MP, Morselli A, Picozza P, Sparvoli R, Barbiellini G, Bravar U, Schiavon P, Vacchi A, Zampa N, Mitchell JW, Ormes JF, Streitmatter RE, Golden RL, Stochaj SJ (1999) The cosmic‐ray proton and helium spectra between 0.4 and 200 GV. Astrophys J 518(1):457–472

    CAS  Google Scholar 

  • Boezio M, Carlson P, Francke T, Weber N, Suffert M, Hof M, Menn W, Simon M, Stephens S, Bellotti R (2000) The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activity. Astrophys J 532(1):653

    CAS  Google Scholar 

  • Buecker H, Horneck G, Allkofer OC, Bartholoma KP, Beaujean R, Cuer P, Enge W, Facius R, Francois H, Graul EH, Henig G, Heinrich W, Kaiser R, Kuhn H, Massue JP, Planel H, Portal G, Reinholz E, Ruther W, Scheuermann W, Schmitt R, Schopper E, Schott JU, Soleilhavoup JP, Wollenhaupt H (1973) The biostack experiment on Apollo 16. Life Sci Space Res 11:295–305

    Google Scholar 

  • Caffrey JA, Hamby DM (2011) A review of instruments and methods for dosimetry in space. Adv Space Res 47(4):563–574

    CAS  Google Scholar 

  • Cane HV, Lario D (2006) An introduction to CMEs and energetic particles. Space Sci Rev 123(1):45–56

    CAS  Google Scholar 

  • Carlson P (2012) A century of cosmic rays. Phys Today 65(2):30–36

    CAS  Google Scholar 

  • Dachev T (2018) Relativistic electron precipitation bands in the outside radiation environment of the international space station. J Atmos Solar-Terr Phys 177:247–256

    CAS  Google Scholar 

  • Dachev T, Tomov B, Matviichuk YN, Dimitrov P, Vadawale S, Goswami J, De Angelis G, Girish V (2011) An overview of RADOM results for earth and moon radiation environment on Chandrayaan-1 satellite. Adv Space Res 48(5):779–791

    CAS  Google Scholar 

  • de Wet W, Townsend L (2017) A calculation of the radiation environment on the martian surface, Life Sci Space Res 14:51-56.

    Google Scholar 

  • Desai M, Giacalone J (2016) Large gradual solar energetic particle events. Living Rev Sol Phys 13(1):3

    PubMed  PubMed Central  Google Scholar 

  • English RA, Benson RE, Bailey JV, Barnes, CM (1973) Apollo experience report: protection against radiation. NASA TN D-7080

    Google Scholar 

  • Flores-McLaughlin J (2017) Spherical volume radiation transport simulation of the martian GCR surface flux and dose estimation with PHITS, Life Sci Space Res 14:36-42.

    Google Scholar 

  • Ginet G, O’Brien T, Huston S, Johnston W, Guild T, Friedel R, Lindstrom C, Roth C, Whelan P, Quinn R (2013) AE9, AP9 and SPM: new models for specifying the trapped energetic particle and space plasma environment. In: The van Allen probes mission. Springer, Boston, MA, pp 579–615

    Google Scholar 

  • Gopalswamy N, Mäkelä P, Yashiro S, Xie H, Akiyama S, Thakur N (2015) High-energy solar particle events in cycle 24. J Phys Conf Ser 642:012012

    Google Scholar 

  • Grotzinger JP, Crisp J, Vasavada AR, Anderson RC, Baker CJ, Barry R, Blake DF, Conrad P, Edgett KS, Ferdowski B, Gellert R, Gilbert JB, Golombek M, Gomez-Elvira J, Hassler DM, Jandura L, Litvak M, Mahaffy P, Maki J, Meyer M, Malin MC, Mitrofanov I, Simmonds JJ, Vaniman D, Welch RV, Wiens RC (2012) Mars science laboratory mission and science investigation. Space Sci Rev 170(1–4):5–56

    Google Scholar 

  • Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Bottcher S, Martin C, Andrews J, Bohm E, Brinza DE, Bullock MA, Burmeister S, Ehresmann B, Epperly M, Grinspoon D, Kohler J, Kortmann O, Neal K, Peterson J, Posner A, Rafkin S, Seimetz L, Smith KD, Tyler Y, Weigle G, Reitz G, Cucinotta FA (2012) The radiation assessment detector (RAD) investigation. Space Sci Rev 170(1–4):503–558

    CAS  Google Scholar 

  • Hess WF (1912) Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys Z XIII:1084–1091

    Google Scholar 

  • Hess WN (1964) The effects of high altitude explosions. NASA TN D-2402

    Google Scholar 

  • ICRP (1991) ICRP Publication 60. The 1990 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21 (1-3). Smith H (Ed.), Pergamon Press Oxford, New York, Frankfurt, Seoul, Sydney, Tokio

    Google Scholar 

  • ICRP (2007) ICRP Publication 60. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37(2-4):1-332. Valentin J (Ed.), Elsevier, Orlando, Amsterdam, Tokyo, Singapore

    Google Scholar 

  • ICRP (2009) ICRP publication 110: adult reference computational phantoms. Joint ICRP/IRCU report. Ann ICRP 39(2):1–165. Clement CH (Ed.), Elsevier, St. Louis, Oxford, Tokyo, Singapore

    Google Scholar 

  • ICRP (2013) ICRP publication 123. Assessment of radiation exposure of astronauts in space. Ann ICRP 42(4):1–339. Clement CH, Sasaki M (Eds.), Elsevier

    Google Scholar 

  • ICRP (2016) ICRP publication 132. Radiological protection from cosmic radiation in aviation. Ann ICRP 45(1):1–48. Clement CH, Hamada N (Eds.), SAGE Publications, London, Thousand Oaks, CA, New Delhi, Singapore, Washington DC and Melbourne

    Google Scholar 

  • ICRU (1986) Report 40: the quality factor in radiation protection. J ICRU os21(1):1–2

    Google Scholar 

  • ICRU (2011) Report 85: fundamental quantities and units for ionizing radiation. J ICRU 11(1):1–31

    Google Scholar 

  • Jentsch V (1981) On the role of external and internal source in generating energy and pitch angle distributions of inner-zone protons. J Geophys Res Space Phys 86(A2):701–710

    CAS  Google Scholar 

  • Jiggens P, Heynderickx D, Sandberg I, Truscott P, Raukunen O, Vainio R (2018) Updated model of the solar energetic proton environment in space. J Space Weather Space Clim 8:A31

    Google Scholar 

  • Kim M-HY, Hayat MJ, Feiveson AH, Cucinotta FA (2009) Prediction of frequency and exposure level of solar particle events. Health Phys 97(1):68–81

    CAS  PubMed  Google Scholar 

  • Kim M-HY, Qualls GD, Slaba TC, Cucinotta FA (2010) Comparison of organ dose and dose equivalent for human phantoms of CAM vs. MAX. Adv Space Res 45(7):850–857

    CAS  Google Scholar 

  • Kim M-HY, Blattnig SR, Clowdsley MC, Norman RB (2017) Using spectral shape and predictor fluence to evaluate temporal dependence of exposures from solar particle events. Space Weather 15(2):374–391

    Google Scholar 

  • Kireeva SA, Benghin VV, Kolomensky AV, Petrov VM (2007) Phantom—dosimeter for estimating effective dose onboard international Space Station. Acta Astronaut 60(4):547–553

    Google Scholar 

  • Konradi A, Atwell W, Badhwar GD, Cash BL, Hardy KA (1992) Low earth orbit radiation dose distribution in a phantom head. Int J Rad Appl Instrum D 20(1):49–54

    CAS  Google Scholar 

  • Lishnevskii A, Panasyuk M, Benghin V, Petrov V, Volkov A, Nechaev OY (2012) Variations of radiation environment on the international Space Station in 2005–2009. Cosm Res 50(4):319–323

    Google Scholar 

  • Ludwig GH (1962) The NASA program for particles and fields research in space. NASA TN D-1173

    Google Scholar 

  • Matthiä D, Berger T (2017) The radiation environment on the surface of Mars—numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS. Life Sci Space Res 14:57–63

    Google Scholar 

  • Matthiä D, Ehresmann B, Lohf H, Köhler J, Zeitlin C, Appel J, Sato T, Slaba T, Martin C, Berger T, Boehm E, Boettcher S, Brinza DE, Burmeister S, Guo J, Hassler DM, Posner A, Rafkin SCR, Reitz G, Wilson JW, Wimmer-Schweingruber RF (2016) The Martian surface radiation environment—a comparison of models and MSL/RAD measurements. J Space Weather Space Clim 6:A13

    Google Scholar 

  • Matthiä D, Hassler DM, de Wet W, Ehresmann B, Firan A, Flores-McLaughlin J, Guo J, Heilbronn LH, Lee K, Ratliff H, Rios RR, Slaba TC, Smith M, Stoffle NN, Townsend LW, Berger T, Reitz G, Wimmer-Schweingruber RF, Zeitlin C (2017) The radiation environment on the surface of Mars—summary of model calculations and comparison to RAD data. Life Sci Space Res 14:18–28

    Google Scholar 

  • Matthiä D, Meier MM, Berger T (2018) The solar particle event on 10–13 September 2017: spectral reconstruction and calculation of the radiation exposure in aviation and space. Space Weather 16(8):977–986. https://doi.org/10.1029/2018SW001921

    Article  Google Scholar 

  • McKenna-Lawlor S, Bhardwaj A, Ferrari F, Kuznetsov N, Lal AK, Li Y, Nagamatsu A, Nymmik R, Panasyuk M, Petrov V, Reitz G, Pinsky L, Muszaphar Shukor S, Singhvi AK, Straube U, Tomi L, Townsend L (2014) Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO. Acta Astronaut 104(2):565–573

    Google Scholar 

  • Mrigakshi AI, Matthiä D, Berger T, Reitz G, Wimmer-Schweingruber RF (2013a) How galactic cosmic ray models affect the estimation of radiation exposure in space. Adv Space Res 51(5):825–834

    Google Scholar 

  • Mrigakshi AI, Matthiä D, Berger T, Reitz G, Wimmer-Schweingruber RF (2013b) Estimation of galactic comic ray exposure inside and outside the Earth’s magnetosphere during the recent solar minimum between solar cycles 23 and 24. Adv Space Res 52(5):979–989

    Google Scholar 

  • Narici L, Berger T, Matthiä D, Reitz G (2015) Radiation measurements performed with active detectors relevant for human space exploration. Front Oncol 5:273

    PubMed  PubMed Central  Google Scholar 

  • NASA (1973) Biomedical results of APOLLO

    Google Scholar 

  • NASA (1991) Radiation protection for human missions to the Moon and Mars

    Google Scholar 

  • NASA (1999) Solar cycle variations and application to the space radiation environment

    Google Scholar 

  • NASA (2013) Space radiation cancer risk projections and uncertainties—2012

    Google Scholar 

  • NASA (2014) NASA space flight human-system standard volume 1, Revision A: Crew Health

    Google Scholar 

  • NASA (2015) Badhwar—O’Neill 2014 galactic cosmic ray flux model description

    Google Scholar 

  • NCRP (2000) NCRP report 132: radiation protection guidance for activities in low-earth orbit

    Google Scholar 

  • Norbury JW, Slaba TC, Aghara S, Badavi FF, Blattnig SR, Clowdsley MS, Heilbronn LH, Lee K, Maung KM, Mertens CJ, Miller J, Norman RB, Sandridge CA, Singleterry R, Sobolevsky N, Spangler JL, Townsend LW, Werneth CM, Whitman K, Wilson JW, Xu SX, Zeitlin C (2019) Advances in space radiation physics and transport at NASA. Life Sci Space Res 22:98–124

    Google Scholar 

  • Powell C (1950) The cosmic radiation. Nobel Lecture

    Google Scholar 

  • Puchalska M, Bilski P, Berger T, Hajek M, Horwacik T, Korner C, Olko P, Shurshakov V, Reitz G (2014) NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS. Radiat Environ Biophys 53(4):719–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratliff HN, Smith MBR, Heilbronn LH (2017) Simulation of the GCR spectrum in the Mars Curiosity rover’s RAD detector using MCNP6, Life Sci Space Res 14:43-50.

    Google Scholar 

  • Reames DV (1999) Particle acceleration at the sun and in the heliosphere. Space Sci Rev 90(3):413–491

    CAS  Google Scholar 

  • Reames DV (2013) The two sources of solar energetic particles. Space Sci Rev 175(1):53–92

    CAS  Google Scholar 

  • Reitz G, Berger T, Bilski P, Facius R, Hajek M, Petrov V, Puchalska M, Zhou D, Bossler J, Akatov Y, Shurshakov V, Olko P, Ptaszkiewicz M, Bergmann R, Fugger M, Vana N, Beaujean R, Burmeister S, Bartlett D, Hager L, Palfalvi J, Szabo J, O’Sullivan D, Kitamura H, Uchihori Y, Yasuda N, Nagamatsu A, Tawara H, Benton E, Gaza R, McKeever S, Sawakuchi G, Yukihara E, Cucinotta F, Semones E, Zapp N, Miller J, Dettmann J (2009) Astronaut’s organ doses inferred from measurements in a human phantom outside the international space station. Radiat Res 171(2):225–235

    CAS  PubMed  Google Scholar 

  • Reitz G, Berger T, Matthiae D (2012) Radiation exposure in the moon environment. Planet Space Sci 74(1):78–83

    Google Scholar 

  • Richmond RG (1972) Radiation dosimetry for the Gemini program. NASA TN D-6695

    Google Scholar 

  • Sato T, Endo A, Sihver L, Niita K (2011) Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms. Radiat Environ Biophys 50(1):115–123

    CAS  PubMed  Google Scholar 

  • Schaefer HJ, Sullivan JJ (1976) Atlas of nuclear emulsion micrographs from personnel dosimeters of manned space missions. NASA CR-149446

    Google Scholar 

  • Schaefer HJ, Benton EV, Henke RP, Sullivan JJ (1972) Nuclear track recordings of the astronauts’ radiation exposure on the first lunar landing mission Apollo XI. Radiat Res 49(2):245–271

    CAS  PubMed  Google Scholar 

  • Schwadron NA, Baker T, Blake B, Case AW, Cooper JF, Golightly M, Jordan A, Joyce C, Kasper J, Kozarev K, Mislinski J, Mazur J, Posner A, Rother O, Smith S, Spence HE, Townsend LW, Wilson J, Zeitlin C (2012) Lunar radiation environment and space weathering from the cosmic ray telescope for the effects of radiation (CRaTER). J Geophys Res Planets 117(E12):E00H13

    Google Scholar 

  • Schwadron NA, Rahmanifard F, Wilson J, Jordan AP, Spence HE, Joyce CJ, Blake JB, Case AW, Wet W, Farrell WM, Kasper JC, Looper MD, Lugaz N, Mays L, Mazur JE, Niehof J, Petro N, Smith CW, Townsend LW, Winslow R, Zeitlin C (2018) Update on the worsening particle radiation environment observed by CRaTER and implications for future human deep‐space exploration. Space Weather 16(3):289–303

    Google Scholar 

  • Semkova J, Koleva R, Benghin V, Dachev T, Matviichuk Y, Tomov B, Krastev K, Maltchev S, Dimitrov P, Mitrofanov I, Malahov A, Golovin D, Mokrousov M, Sanin A, Litvak M, Kozyrev A, Tretyakov V, Nikiforov S, Vostrukhin A, Fedosov F, Grebennikova N, Zelenyi L, Shurshakov V, Drobishev S (2018) Charged particles radiation measurements with Liulin-MO dosimeter of FREND instrument aboard ExoMars trace gas Orbiter during the transit and in high elliptic Mars orbit. Icarus 303:53–66

    CAS  Google Scholar 

  • Simonsen LC, Nealy JE, Townsend LW, Wilson JW (1990) Space radiation-dose estimates on the surface of mars. J Spacecraft and Rockets 27(4):353–354

    CAS  Google Scholar 

  • Simpson JA (1983) Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nuc Part Sci 33:323–382

    CAS  Google Scholar 

  • Simpson JA (2000) The cosmic ray nucleonic component: the invention and scientific uses of the neutron monitor. In: Cosmic rays and earth. Springer, Dordrecht, pp 11–32

    Google Scholar 

  • Slaba TC, Blattnig SR (2014) GCR environmental models I: sensitivity analysis for GCR environments. Space Weather 12(4):217–224

    Google Scholar 

  • Slaba TC, Stoffle NN (2017) Evaluation of HZETRN on the Martian surface: sensitivity tests and model results. Life Sci Space Res 14:29–35

    Google Scholar 

  • Slaba TC, Blattnig SR, Clowdsley MS (2011) Variation in lunar neutron dose estimates. Radiat Res 176(6):827–841

    CAS  PubMed  Google Scholar 

  • Slaba TC, Bahadori AA, Reddell BD, Singleterry RC, Clowdsley MS, Blattnig SR (2017) Optimal shielding thickness for galactic cosmic ray environments. Life Sci Space Res 12:1–15

    Google Scholar 

  • Spence HE, Golightly MJ, Joyce CJ, Looper MD, Schwadron NA, Smith SS, Townsend LW, Wilson J, Zeitlin C (2013) Relative contributions of galactic cosmic rays and lunar proton “albedo” to dose and dose rates near the moon. Space Weather 11(11):643–650

    Google Scholar 

  • Straube U, Berger T, Reitz G, Facius R, Fuglesang C, Reiter T, Damann V, Tognini M (2010) Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA medical operations. Acta Astronaut 66(7):963–973

    CAS  Google Scholar 

  • Townsend LW, Nealy JE, Wilson JW, Atwell W (1989) Large solar flare radiation shielding requirements for manned interplanetary missions. J Spacecraft Rockets 26(2):126–128

    CAS  Google Scholar 

  • Townsend LW, Shinn JL, Wilson JW (1991) Interplanetary crew exposure estimates for the august 1972 and October 1989 solar particle events. Radiat Res 126(1):108–110

    CAS  PubMed  Google Scholar 

  • Townsend LW, Adams JH, Blattnig SR, Clowdsley MS, Fry DJ, Jun I, McLeod CD, Minow JI, Moore DF, Norbury JW, Norman RB, Reames DV, Schwadron NA, Semones EJ, Singleterry RC, Slaba TC, Werneth CM, Xapsos MA (2018) Solar particle event storm shelter requirements for missions beyond low earth orbit. Life Sci Space Res 17:32–39

    CAS  Google Scholar 

  • Tylka AJ, Dietrich WF, Atwell W (2010) Assessing the space-radiation hazard in ground-level enhanced (GLE) solar particle events. 2010 Fall AGU Meeting, San Francisco, CA

    Google Scholar 

  • Uchihori Y, Fujitaka K, Yasuda N, Benton E (2002) Intercomparison of radiation instruments for cosmic-ray with heavy ion beams at NIRS (ICCHIBAN project). J Radiat Res 43(Suppl):S81–S85

    CAS  PubMed  Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation, ANNEX B, Exposures from natural radiation sources. UNSCEAR 2000 REPORT, New York 1: 97–99

    Google Scholar 

  • Van Allen JA, Frank LA (1959) Radiation around the earth to a radial distance of 107,400 km. Nature 183(4659):430–434

    Google Scholar 

  • Van Allen JA, McIlwain CE, Ludwig GH (1959a) Radiation observations with satellite 1958 ε. J Geophys Res 64(3):271–286

    Google Scholar 

  • Van Allen JA, McIlwain CE, Ludwig GH (1959b) Satellite observations of electrons artificially injected into the geomagnetic field. J Geophys Res 64(8):877–891

    Google Scholar 

  • Vernov SN, Chudakov AE (1960) Investigations of cosmic radiation and of the tab—errestrial corpuscular radiation by means of rockets and satellites. Sov Phys Usp 3(2):230–250

    Google Scholar 

  • Vette JI (1991) The NASA/national space science data center trapped radiation belt model (1964–1991). National Space Science Data Center (NSSDC), Greenbelt, MD

    Google Scholar 

  • Warren CS, Gill WL (1964) Radiation dosimetry aboard the spacecraft of the eight Mercury-Atlas mission (MA-8). NASA TN D-1862

    Google Scholar 

  • Wilson JW (1978) Environmental geophysics and SPS shielding

    Google Scholar 

  • Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA (2000) Probability model for cumulative solar proton event fluences. IEEE Trans Nuc Sci 47(3):486–490

    Google Scholar 

  • Yasuda H (2009) Effective dose measured with a life size human phantom in a low earth orbit mission. J Radiat Res 50(2):89–96

    PubMed  Google Scholar 

  • Yasuda N, Uchihori Y, Benton ER, Kitamura H, Fujitaka K (2006) The intercomparison of cosmic rays with heavy ion beams at NIRS (ICCHIBAN) project. Radiat Prot Dosim 120(1–4):414–420

    CAS  Google Scholar 

  • Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE, Kang S, Weigle G, Böttcher S, Böhm E, Burmeister S, Guo J, Köhler J, Martin C, Posner A, Rafkin S, Reitz G (2013) Measurements of energetic particle radiation in transit to Mars on the Mars science laboratory. Science 340:1080–1084

    CAS  PubMed  Google Scholar 

  • Zeitlin C, Hassler DM, Guo J, Ehresmann B, Wimmer-Schweingruber RF, Rafkin S, Freiherr von Forstner JL, Lohf H, Berger T, Matthiä D, Reitz G (2018) Analysis of the radiation hazard observed by RAD on the surface of mars during the September 2017 solar particle event. Geophys Res Lett 45:5845–5851

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hellweg, C.E., Matthiä, D., Berger, T., Baumstark-Khan, C. (2020). Radiation in Space: The Physics. In: Radiation in Space: Relevance and Risk for Human Missions. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-46744-9_2

Download citation

Publish with us

Policies and ethics