Skip to main content

Calcifying Extracellular Vesicles: Biology, Characterization, and Mineral Formation

  • Chapter
  • First Online:
Cardiovascular Calcification and Bone Mineralization

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 727 Accesses

Abstract

Extracellular vesicles (EVs) are membrane-enclosed organelles that serve as biological messengers that mediate cell-cell communication and have been implicated in disease progression. EVs are secreted by various cell types and can be assayed from tissue, cell culture media, and biological fluids collected from animals and human subjects. A special subtype of EVs known as matrix vesicles has been studied as nucleating sites for mineralization in skeletal tissues. More recently, studies have found that EVs derived from calcified vascular tissues have similar properties to matrix vesicles released within bone. This opens up novel avenues for a deeper mechanistic understanding and characterization of vascular calcification through analysis of these EVs. However, these analyses are limited by the small size and extremely complex and heterogeneous nature of the vesicles. The advent of new technologies, many of which were originally developed for analysis of synthetic nanoparticles, has provided new insight into EV properties and function. This chapter focuses on the characterization of EV properties demonstrated by various physical, structural, and biomolecular analyses that have allowed for a more comprehensive description of the initiation of calcification. We will begin by briefly reviewing the properties of calcifying EVs that promote mineralization, followed by a focus on the current discussion on commonly utilized and emerging techniques to measure EV properties. We outline several methodologies and detail the advantages and limitations of each technique, along with possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  2. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. Journal Extracell Vesicles. 2014;3:24641.

    Google Scholar 

  3. Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005;67(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  4. Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res. 2013;98(1):94–106.

    Article  CAS  PubMed  Google Scholar 

  5. Owens AP 3rd, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108(10):1284–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chernomordik L, Kozlov MM, Zimmerberg J. Lipids in biological membrane fusion. J Membr Biol. 1995;146(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson HC. Molecular biology of matrix vesicles. Clin Orthop Relat Res. 1995;314:266–80.

    Google Scholar 

  8. Huang MS, Sage AP, Lu J, Demer LL, Tintut Y. Phosphate and pyrophosphate mediate PKA-induced vascular cell calcification. Biochem Biophys Res Commun. 2008;374(3):553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pokhrel R, Gerstman BS, Hutcheson JD, Chapagain PP. In silico investigations of calcium phosphate mineralization in extracellular vesicles. J Phys Chem B. 2018;122(14):3782–9.

    Article  CAS  PubMed  Google Scholar 

  10. Wuthier RE, Wu LN, Sauer GR, Genge BR, Yoshimori T, Ishikawa Y. Mechanism of matrix vesicle calcification: characterization of ion channels and the nucleational core of growth plate vesicles. Bone Miner. 1992;17(2):290–5.

    Article  CAS  PubMed  Google Scholar 

  11. Skrtic D, Eanes ED. Membrane-mediated precipitation of calcium phosphate in model liposomes with matrix vesicle-like lipid composition. Bone Miner. 1992;16(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  12. Kapustin AN, Chatrou ML, Drozdov I, Zheng Y, Davidson SM, Soong D, et al. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res. 2015;116(8):1312–23.

    Article  CAS  PubMed  Google Scholar 

  13. Kapustin AN, Schoppet M, Schurgers LJ, Reynolds JL, McNair R, Heiss A, et al. Prothrombin loading of vascular smooth muscle cell-derived exosomes regulates coagulation and calcification. Arterioscler Thromb Vasc Biol. 2017;37(3):e22–32.

    Article  CAS  PubMed  Google Scholar 

  14. New SE, Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol. 2013;33(8):1753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest. 2016;126(4):1323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goettsch C, Iwata H, Hutcheson JD, O’Donnell CJ, Chapurlat R, Cook NR, et al. Serum Sortilin associates with aortic calcification and cardiovascular risk in men. Arterioscler Thromb Vasc Biol. 2017;37(5):1005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hutcheson JD, Goettsch C, Bertazzo S, Maldonado N, Ruiz JL, Goh W, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15(3):335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013;110(26):10741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jansen F, Stumpf T, Proebsting S, Franklin BS, Wenzel D, Pfeifer P, et al. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J Mol Cell Cardiol. 2017;104:43–52.

    Article  CAS  PubMed  Google Scholar 

  20. Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol. 2004;286(5):H1910–5.

    Article  CAS  PubMed  Google Scholar 

  21. Yang W, Zou B, Hou Y, Yan W, Chen T, Qu S. Extracellular vesicles in vascular calcification. Clin Chim Acta. 2019;499:118–22.

    Article  CAS  PubMed  Google Scholar 

  22. Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular vesicles as mediators of cardiovascular calcification. Front Cardiovasc Med. 2017;4:78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Blaser MC, Aikawa E. Roles and regulation of extracellular vesicles in cardiovascular mineral metabolism. Front Cardiovasc Med. 2018;5:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang C, Zhang K, Huang F, Feng W, Chen J, Zhang H, et al. Exosomes, the message transporters in vascular calcification. J Cell Mol Med. 2018;22(9):4024–33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liberman M, Marti LC. Vascular calcification regulation by exosomes in the vascular wall. Adv Exp Med Biol. 2017;998:151–60.

    Article  CAS  PubMed  Google Scholar 

  26. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krohn JB, Hutcheson JD, Martinez-Martinez E, Aikawa E. Extracellular vesicles in cardiovascular calcification: expanding current paradigms. J Physiol. 2016;594(11):2895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT, Sidibe A, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 2011;109(1):e1–12.

    Article  CAS  PubMed  Google Scholar 

  29. Balcerzak M, Malinowska A, Thouverey C, Sekrecka A, Dadlez M, Buchet R, et al. Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics. 2008;8(1):192–205.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao Z, Camalier CE, Nagashima K, Chan KC, Lucas DA, de la Cruz MJ, et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol. 2007;210(2):325–35.

    Article  CAS  PubMed  Google Scholar 

  31. Chen NX, O'Neill K, Chen X, Kiattisunthorn K, Gattone VH, Moe SM. Transglutaminase 2 accelerates vascular calcification in chronic kidney disease. Am J Nephrol. 2013;37(3):191–8.

    Article  PubMed  CAS  Google Scholar 

  32. Schoppet M, Kavurma MM, Hofbauer LC, Shanahan CM. Crystallizing nanoparticles derived from vascular smooth muscle cells contain the calcification inhibitor osteoprotegerin. Biochem Biophys Res Commun. 2011;407(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  33. Hutcheson JD, Blaser MC, Aikawa E. Giving calcification its due: recognition of a diverse disease: a first attempt to standardize the field. Circ Res. 2017;120(2):270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen NX, O’Neill KD, Chen X, Moe SM. Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J Bone Miner Res. 2008;23(11):1798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hutcheson JD, Goettsch C, Pham T, Iwashita M, Aikawa M, Singh SA, et al. Enrichment of calcifying extracellular vesicles using density-based ultracentrifugation protocol. J Extracell Vesicles. 2014;3:25129.

    Article  PubMed  Google Scholar 

  36. Goto S, Rogers MA, Blaser MC, Higashi H, Lee LH, Schlotter F, et al. Standardization of human calcific aortic valve disease in vitro modeling reveals passage-dependent calcification. Front Cardiovasc Med. 2019;6:49.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hutcheson JD, Maldonado N, Aikawa E. Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability. Curr Opin Lipidol. 2014;25(5):327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113(1):72–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. Mineola, New York: Dover Publications; 2000.

    Google Scholar 

  40. Hassan PA, Rana S, Verma G. Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir. 2015;31(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  41. Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–51.

    Article  CAS  PubMed  Google Scholar 

  42. Pasch A, Farese S, Gräber S, Wald J, Richtering W, Floege J, et al. Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol. 2012;23(10):1744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heiss A, Duchesne A, Denecke B, Grötzinger J, Yamamoto K, Renné T, et al. Structural basis of calcification inhibition by α2-HS glycoprotein/Fetuin-A. J Biol Chem. 2003;278(15):13333–41.

    Article  CAS  PubMed  Google Scholar 

  44. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Svedberg T, Rinde H. The determination of the distribution of size of particles in disperse systems1. J Am Chem Soc. 1923;45(4):943–54.

    Article  Google Scholar 

  46. Malloy A, Carr B. Nanoparticle tracking analysis – the Halo™ System. Particle & Particle Systems Characterization. 2006;23(2):197–204.

    Google Scholar 

  47. de Rond L, Libregts S, Rikkert LG, Hau CM, van der Pol E, Nieuwland R, et al. Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J Extracell Vesicles. 2019;8(1):1643671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shen W, Guo K, Adkins GB, Jiang Q, Liu Y, Sedano S, et al. A single Extracellular Vesicle (EV) flow cytometry approach to reveal EV heterogeneity. Angew Chem Int Ed Engl. 2018;57(48):15675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shapiro HM. Practical flow cytometry. Hoboken, New Jersey: Wiley; 2005.

    Google Scholar 

  50. Chandler W, Yeung W, Tait J. A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost. 2011;9(6):1216–24.

    Article  CAS  PubMed  Google Scholar 

  51. Robert S, Lacroix R, Poncelet P, Harhouri K, Bouriche T, Judicone C, et al. High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles–brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(4):1054–8.

    Google Scholar 

  52. Brussaard CPD, Marie D, Bratbak G. Flow cytometric detection of viruses. J Virol Methods. 2000;85(1–2):175–82.

    Article  CAS  PubMed  Google Scholar 

  53. Arraud N, Gounou C, Linares R, Brisson AR. A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles. J Thromb Haemost. 2015;13(2):237–47.

    Article  CAS  PubMed  Google Scholar 

  54. Blundell ELCJ, Vogel R, Platt M. Particle-by-particle charge analysis of DNA-modified nanoparticles using tunable resistive pulse sensing. Langmuir. 2016;32(4):1082–90.

    Article  CAS  PubMed  Google Scholar 

  55. Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reátegui E, et al. High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci Rep. 2017;7:17479.

    Google Scholar 

  56. Panday N, Qian G, Wang X, Chang S, Pandey P, He J. Simultaneous ionic current and potential detection of nanoparticles by a multifunctional nanopipette. ACS Nano. 2016;10(12):11237–48.

    Article  CAS  PubMed  Google Scholar 

  57. Shaked NT, Zalevsky Z, Satterwhite LL. Biomedical optical phase microscopy and nanoscopy. Oxford, UK: Elsevier Science; 2012.

    Google Scholar 

  58. Goodhew PJ, Humphreys J. Electron microscopy and analysis. Boca Raton, Florida: CRC Press; 2000.

    Google Scholar 

  59. Chuo ST-Y, Chien JC-Y, Lai CP-K. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci. 2018;25:91.

    Google Scholar 

  60. Choi H, Mun JY. Structural analysis of exosomes using different types of electron microscopy. Appl Microscopy. 2017;47(3):171–5.

    Article  Google Scholar 

  61. Cizmar P, Yuana Y. Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy, Extracellular vesicles. New York, NY: Springer; 2017. p. 221–32.

    Google Scholar 

  62. Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The methods of choice for Extracellular Vesicles (EVs) characterization. Int J Mol Sci. 2017;18(6):1153.

    Article  PubMed Central  CAS  Google Scholar 

  63. Sokolov I, Dokukin ME, Guz NV. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods. 2013;60(2):202–13.

    Google Scholar 

  64. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56(9):930–3.

    Article  CAS  PubMed  Google Scholar 

  65. Choi D-S, Kim D-K, Kim Y-K, Gho YS. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev. 2015;34(4):474–90.

    Article  CAS  PubMed  Google Scholar 

  66. Jannetto PJ, Fitzgerald RL. Effective use of mass spectrometry in the clinical laboratory. Clin Chem. 2016;62(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  67. Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841(1):108–20.

    Article  CAS  PubMed  Google Scholar 

  68. Del Boccio P, Raimondo F, Pieragostino D, Morosi L, Cozzi G, Sacchetta P, et al. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis. 2012;33(4):689–96.

    Article  PubMed  CAS  Google Scholar 

  69. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kliman M, May JC, McLean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta. 2011;1811(11):935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ecker J, Scherer M, Schmitz G, Liebisch G. A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;897:98–104.

    Article  CAS  PubMed  Google Scholar 

  72. Hu T, Zhang JL. Mass-spectrometry-based lipidomics. J Sep Sci. 2018;41(1):351–72.

    Article  CAS  PubMed  Google Scholar 

  73. Gupta N, Benhamida J, Bhargava V, Goodman D, Kain E, Kerman I, et al. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res. 2008;18(7):1133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 2009;119(13):1785–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116(24):2841–50.

    Article  CAS  PubMed  Google Scholar 

  76. Genge BR, Wu LN, Wuthier RE. Kinetic analysis of mineral formation during in vitro modeling of matrix vesicle mineralization: effect of annexin A5, phosphatidylserine, and type II collagen. Anal Biochem. 2007;367(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  77. Genge BR, Wu LN, Wuthier RE. In vitro modeling of matrix vesicle nucleation: synergistic stimulation of mineral formation by annexin A5 and phosphatidylserine. J Biol Chem. 2007;282(36):26035–45.

    Article  CAS  PubMed  Google Scholar 

  78. Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2:19861.

    Google Scholar 

  79. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):148–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Hutcheson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, H.H., Molina, J.E., Hutcheson, J.D. (2020). Calcifying Extracellular Vesicles: Biology, Characterization, and Mineral Formation. In: Aikawa, E., Hutcheson, J. (eds) Cardiovascular Calcification and Bone Mineralization. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-46725-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46725-8_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-46724-1

  • Online ISBN: 978-3-030-46725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics