Skip to main content

Electron Microscopy for the Characterization of Soft Tissue Mineralization

  • Chapter
  • First Online:
Cardiovascular Calcification and Bone Mineralization

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

In this chapter, the basic principles of electron microscopy and its application to the study of cardiovascular calcification will be presented, with the main objective of introducing a technique that could be routinely used in most laboratories working with pathological calcification. With this chapter, we hope the reader will achieve a basic understanding on how to prepare and image pathological minerals in situ. The chapter will discuss the most suitable sample preparation protocols for precise visualisation and characterization of pathological minerals using conventional scanning and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amelinckx S, Wiley I, Synergy, Wiley Online L. Electron microscopy: principles and fundamentals /edited by S. Amelinckx [and others]. Weinheim: VCH; 1997.

    Google Scholar 

  2. Janssens K. Electron microscopy. In: Modern methods for analysing archaeological and historical glass, Volume I, vol. 1. United Kingdom: Wiley; 2013. p. 129–54.

    Chapter  Google Scholar 

  3. Thomas JM, Ducati C. Transmission electron microscopy. In: Characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity, Volume 1&2, vol. 2. Weinheim: Wiley-VCH; 2012. p. 655–701.

    Chapter  Google Scholar 

  4. Vladár AE, Postek MT, Ming B. On the sub-nanometer resolution of scanning electron and helium ion microscopes. Microscopy Today. 2018;17(2):6–13.

    Article  Google Scholar 

  5. Bogner A, Jouneau PH, Thollet G, Basset D, Gauthier C. A history of scanning electron microscopy developments: towards “wet-STEM” imaging. Micron. 2007;38(4):390–401.

    Article  CAS  Google Scholar 

  6. Heintzmann R, Ficz G. Breaking the resolution limit in light microscopy. Brief Funct Genomic Proteomic. 2006;5(4):289–301.

    Article  Google Scholar 

  7. Ke X, Bittencourt C, Van Tendeloo G. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials. Beilstein J Nanotechnol. 2015;6:1541–57.

    Article  CAS  Google Scholar 

  8. Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone—a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Research. 2019;7(1):15.

    Article  Google Scholar 

  9. Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat Mater. 2013;12(6):576–83.

    Article  CAS  Google Scholar 

  10. Tan ACS, Pilgrim MG, Fearn S, Bertazzo S, Tsolaki E, Morrell AP, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Trans Med. 2018;10(466).

    Google Scholar 

  11. Polkowska A, Warmuzek M, Kalarus J, Polkowski W, Sobczak N. A comparison of various imaging modes in scanning electron microscopy during evaluation of selected Si/refractory sessile drop couples after wettability tests at ultra-high temperature. Prace Instytutu Odlewnictwa (transactions of Foundry Research Institute). 2017;57(4):337–55.

    Google Scholar 

  12. Joy DC, Joy CS. Low voltage scanning electron microscopy. Micron. 1996;27(3–4):247–63.

    Article  Google Scholar 

  13. Hutcheson JD, Goettsch C, Bertazzo S, Maldonado N, Ruiz JL, Goh W, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15:335.

    Article  CAS  Google Scholar 

  14. Bazin D, Jouanneau C, Bertazzo S, Sandt C, Dessombz A, Réfrégiers M, et al. Combining field effect scanning electron microscopy, deep UV fluorescence, Raman, classical and synchrotron radiation Fourier transform Infra-Red Spectroscopy in the study of crystal-containing kidney biopsies. C R Chim. 2016;19(11–12):1439–50.

    Article  CAS  Google Scholar 

  15. Bray D. Critical point drying of biological specimens for scanning electron microscopy. In: Williams JR, Clifford AA, editors. Supercritical fluid methods and protocols. Totowa: Humana Press; 2000. p. 235–43.

    Chapter  Google Scholar 

  16. Braet F, De Zanger R, Wisse E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J Microsc. 2003;186(1):84–7.

    Article  Google Scholar 

  17. Braet F, de Zanger R, Wisse E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J Microsc-Oxf. 1997;186:84–7.

    Article  CAS  Google Scholar 

  18. Ayache J, Beaunier L, Boumendil J, Ehret G, Laub D. Sample preparation handbook for transmission electron microscopy. New York: Springer; 2010.

    Book  Google Scholar 

  19. Andrews KW, Dyson DJ, Keown SR. Interpretation of electron diffraction patterns. Boston: Springer; 1967.

    Book  Google Scholar 

  20. Hayat MA. Immunogold-silver staining: principles, methods and applications. USA: CRC Press Inc; 1995.

    Google Scholar 

  21. Jones JC. Pre- and post-embedding immunogold labeling of tissue sections. Methods Mol Biol. 2016;1474:291–307.

    Article  CAS  Google Scholar 

  22. Thiery G, Bernier J, Bergeron M. A simple technique for staining of cell membranes with imidazole and osmium tetroxide. J Histochem Cytochem. 1995;43(10):1079–84.

    Article  CAS  Google Scholar 

  23. Venable JH, Coggeshall R. A simplified lead citrate stain for use in electron microscopy. J Cell Biol. 1965;25(2):407–8.

    Article  CAS  Google Scholar 

  24. Glauert AM, Lewis PR. Biological specimen preparation for transmission electron microscopy. Princeton University Press; 1998.

    Google Scholar 

  25. Kizilyaprak C, Daraspe J, Humbel BM. Focused ion beam scanning electron microscopy in biology. J Microsc. 2014;254(3):109–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Bertazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsolaki, E., Bertazzo, S. (2020). Electron Microscopy for the Characterization of Soft Tissue Mineralization. In: Aikawa, E., Hutcheson, J. (eds) Cardiovascular Calcification and Bone Mineralization. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-46725-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46725-8_10

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-46724-1

  • Online ISBN: 978-3-030-46725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics