Skip to main content

Laboratory Investigations and Result Interpretation

  • Chapter
  • First Online:
Antimicrobials in Livestock 1: Regulation, Science, Practice

Abstract

Proper clinical diagnosis, knowledge of the animal/s history, clinical experience as well as results of laboratory tests, support evidence-based, and correct decision on any use of antimicrobials. In the case of diagnosed disease with bacterium as a suspected etiological agent, in which resistance or even multiresistance can be expected, results of laboratory susceptibility testing are one of the essential tools for proper choice of an appropriate antimicrobial to be used for treatment. Each laboratory process starts with proper sampling. Chosen recommendations regarding bacteriological sampling are mentioned as well as sampling for yeast or microscopic fungi detection, which is briefly touched. Brief summary describing process of investigation and its limitations together with certain guidance for or links to the interpretation of laboratory results are given. To catch current progress and development of new methods of rapid antimicrobial susceptibility testing, a brief overview is given with view that some of those methods originally designed for human medicine could be, in the near future, also used in veterinary medicine. Laboratory data can significantly support the clinical and empirical decision for therapy using the proper antimicrobial considering the results of susceptibility testing. As a further benefit, data on susceptibility and resistance profiles allows us to follow the trends in susceptibility of the pathogens of concern. Proper samples taken by valid techniques and laboratory results on the efficacy of certain antimicrobials in vitro can contribute to success of treatment and minimizing of resistance development and spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarestrup F, Seyfarth A, Angen O (2004) Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark. Vet Microbiol 101:143–146

    Article  CAS  PubMed  Google Scholar 

  • AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, Randall LP, Lemma F, Crook DW, Teale C, Smith RP, Anjum MF (2017) mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother 72:2745–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apley MD (2017) Susceptibility testing in veterinary medicine: what you can and can’t conclude from antimicrobial susceptibility testing. Pharmacology II, Kansas State University, p 21. https://vetmed.illinois.edu/wp-content/uploads/sites/20/2017/04/Apley-Susceptibility-testing-Pharm-II-2017.pdf

  • Arena F, Tommaso F, Vaggeli G, Terenzi G, Pecile P, Rossolini GM (2015) Accuracy of different methods for susceptibility testing of gentamicin with KPC carbapenemase-producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis 81:132–134

    Article  CAS  PubMed  Google Scholar 

  • Baltekin O, Boucharin A, Tano E, Andersson DI, Elf J (2017) Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc Nat Acad Sci USA 20:558

    Google Scholar 

  • Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B (2017) Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 72:3317–3324

    Article  CAS  PubMed  Google Scholar 

  • Bywater R, Silley P, Simjee S (2006) Antimicrobial breakpoints—definitions and conflict requirements. Vet Microbiol 118:158–159

    Article  CAS  PubMed  Google Scholar 

  • Caniaux I, van Belkum A, Zambardi G, Poirel L, Gros MF (2017) MCR: modern colistin resistance. Eu J Clini Microbiol Infect Dis 36:415–420

    Article  CAS  Google Scholar 

  • Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, Pezzotti G, Magistrali CF (2017) Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 22:30589

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M (2019) Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio 7:1–6

    Google Scholar 

  • CA-SFM (2018) Recommandations vétérinaires 2018. Comité de l’antibiogramme de la Société Francaise de Microbiologie. SFM, Paris, p 15

    Google Scholar 

  • Cavaco LM, Frimodt-Møller N, Hasman H, Guardabassi L, Nielsen L, Aarestrup FM (2008) Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark. Microbial Drug Resist 14:163–169

    Article  CAS  Google Scholar 

  • Chantell C (2015) Multiplexed automated digital microscopy for rapid identification and antimicrobial susceptibility testing of bacteria and yeast directly from clinical samples. Clin Microbiol News 37:161–167

    Article  Google Scholar 

  • Chew KL, La MV, Lin RTP, Teo JWP (2017) Colistin and polymyxin B susceptibility testing for carbapenem-resistant and mcr-positive Enterobacteriaceae: comparison of Sensititre, MicroScan, Vitek 2, and Etest with broth microdilution. J Clini Microbiol 55:2609–2616

    Article  CAS  Google Scholar 

  • Choi J, Jung YG, Kim J, Kim S, Jung Y, Na H, Kwon S (2013) Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 13:280–287

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Yoo J, Lee M, Kim E, Lee JS, Lee S, Joo S, Song SH, Kim EC, Lee JC, Kim HC, Jung YG, Kwon S (2014) A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med 6:267–274

    Article  CAS  Google Scholar 

  • CLSI (2008) Development of in vitro susceptibility testing. Criteria and quality control parameters for veterinary antimicrobial agents. CLSI document M37-A3. Approved Guideline, 3rd edn. Clinical and Laboratory Standards Institute, Wayne, p 43

    Google Scholar 

  • CLSI (2012) Methods for antimicrobial susceptibility testing of anaerobic bacteria. CLSI document M11-A8. Approved Standard, 8th edn. Clinical and Laboratory Standards Institute, Wayne, p 39

    Google Scholar 

  • CLSI (2013a) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. CLSI document Vet 01-A4. Approved Standard, 4th edn. Clinical and Laboratory Standards Institute, Wayne, p 80

    Google Scholar 

  • CLSI (2013b) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. CLSI document Vet 01-S2. 2nd Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, p 70

    Google Scholar 

  • CLSI (2016) Methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals. CLSI document VET 06, 1st edn. Clinical and Laboratory Standards Institute, Wayne, p 101

    Google Scholar 

  • CLSI (2018a) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. CLSI document Vet 08, 4th edn. Clinical and Laboratory Standards Institute, Wayne, p 170

    Google Scholar 

  • CLSI (2018b) Performance standards for antimicrobial susceptibility testing. CLSI document M 100, 28th edn. Clinical and Laboratory Standards Institute, Wayne, p 258

    Google Scholar 

  • Drusano GL (1990) Human pharmacodynamics of beta-lactams, aminoglycosides and their combinations. Scand J Infect Dis Suppl 74:235–248

    CAS  PubMed  Google Scholar 

  • ECDC (2018) Rapid risk assessment: carbapenem-resistant Enterobacteriaceae—first update 4 June 2018. European Centre for Disease Prevention and Control, Stockholm. https://vetmed.illinois.edu/wp-content/uploads/sites/20/2017/04/6.2-Apley-Susceptiblity-Testing-EVP-2017-1.pdf. Accessed 6 June 2019

  • EMA (2018) Reflection paper on use of aminoglycosides in animals in the European Union: development of resistance and impact on human and animal health (EMA/CVMP/AWP/721118/2014). https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-aminoglycosides-animals-european-union-development-resistance-impact-human_en.pdf. Assessed 6 June 2019

  • Etayash H, Khan MF, Kaur K, Thundat T (2016) Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun 7:12947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EUCAST (2000) Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microbiol Infect 6:503–508

    Article  Google Scholar 

  • EUCAST (2019a) New definitions of S, I and R. European Committee on Antimicrobial Susceptibility Testing. http://www.eucast.org/newsiandr/. Assessed 6 June 2019

  • EUCAST (2019b) Area of technical uncertainty (ATU) in antimicrobial susceptibility testing. European Committee on Antimicrobial Susceptibility Testing. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Area_of_Technical_Uncertainty_-_guidance_2019-1.pdf. Assessed 6 June 2019

  • EUCAST (2019c) European committee on antimicrobial susceptibility testing. http://www.eucast.org. Assessed 6 June 2019

  • Godin M, Delgado FF, Son S, Grover WH, Bryan AK, Tzur A, Jorgensen P, Payer K, Grossman AD, Kirschner MW, Manalis SR (2010) Using buoyant mass to measure the growth of single cells. Nat Methods 7:387–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammoudi D, Moubareck CA, Sarkis DK (2014) How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods 107:106–118

    Article  CAS  PubMed  Google Scholar 

  • Hayden RT, Clinton LK, Hewitt C, Koyamatsu T, Sun Y, Jamison GPerkins R, Tang L, Pounds S, Bankowski MJ (2016) Rapid antimicrobial susceptibility testing using forward laser light scatter technology. J Clin Microbiol 54:2701–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JA, Cowen LE (2015) Using combination therapy to thwart drug resistance. Future Microbiol 10:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Howell M, Wirz D, Daniels AU, Braissant O (2012) Application of a microcalorimetric method for determining drug susceptibility in Mycobacterium species. J Clin Microbiol 50:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh MH, Yu CM, Yu VL, Chow JW (1993) Synergy assessed by checkerboard. A critical analysis. Diagn Microbiol Infect Dis 16:343–349

    Article  CAS  PubMed  Google Scholar 

  • Javed M, Ueltzheffer V, Heinrich M, Siegrist HJ, Wildermuth R, Lorenz FR, Neher RA, Willmann M (2018) Colistin susceptibility test evaluation of multiple-resistance-level Pseudomonas aeruginosa isolates generated in a morbidostat device. J Antimicrob Chemother 73:3368–3374

    CAS  PubMed  Google Scholar 

  • Jawetz E (1975) Synergism and antagonism among antimicrobials drugs. A personal perspective. West J Med 123:87–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen JH (1993) Selection of antimicrobial agents for routine testing in clinical microbiology laboratory. Diagn Microbiol Infect Dis 16:245–249

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles or contemporary practises. Med Microbiol 49:1749–1755

    CAS  Google Scholar 

  • Kinnunen P, Sinn I, McNaughton BH, Newton DW, Burns MA, Kopelman R (2011) Monitoring the growth and drug susceptibility of individual bacteria using asynchronous magnetic bead rotation sensors. Biosens Bioelectron 26:2751–2755

    Article  CAS  PubMed  Google Scholar 

  • Kostyanev T, Can F (2017) The global crisis of antimicrobial resistance. In: Pulcini C, Ergonul O, Can F, Beović B (eds) Antimicrobial stewardship—developments in emerging and existing infectious diseases. Academic, Cambridge, pp 3–12

    Google Scholar 

  • Leclercq R, Canton R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, Mouton JW, Nordmann P, Rodloff AC, Rossolini GM, Soussy CJ, Steinbakk M, Winstanley TG, Kahlmeter G (2013) EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 19:141–160

    Article  CAS  PubMed  Google Scholar 

  • Leekha S, Terrell CL, Edson RS (2011) General principles of antimicrobial therapy. Mayo Clin Proc 86:156–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Levison ME (2004) Pharmacodynamics of antimicrobial drugs. Infect Dis Clin N Am 18:451–465, vii

    Article  Google Scholar 

  • Liu CY, Han YY, Shih PH, Lian WN, Wang HH, Lin CH, Hsueh PR, Wang JK, Wang YL (2016a) Rapid bacterial antibiotic susceptibility test based on simple surfaceenhanced Raman spectroscopic biomarkers. Sci Rep 6:23375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lu L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016b) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM (2012) Current epidemiology and growing resistance of Gram-negative pathogens. Korean J Inter Med 27:128–142

    Article  CAS  Google Scholar 

  • Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8:522–526

    Article  CAS  PubMed  Google Scholar 

  • Maugeri G, Lychko I, Sobral R, Roque ACA (2019) Identification and antibiotic-susceptibility profiling of infectious bacterial agents: a review of current and future trends. Biotechnol J 14:1700750

    Article  CAS  Google Scholar 

  • Metzger S, Frobel RA, Dunne WM (2014) Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy. Diagn Microbiol Infect Dis 79:160–165

    Article  PubMed  Google Scholar 

  • Moellering RC (1983) Rationale for use of antimicrobial combinations. Am J Med 75:4–8

    Article  PubMed  Google Scholar 

  • Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJ (2013) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125

    Article  CAS  PubMed  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1

    Article  CAS  PubMed  Google Scholar 

  • Official Journal of the European Union, 2015/C 299/04 (2015) COMMISSION NOTICE—guidelines for the prudent use of antimicrobials in veterinary medicine. https://ec.europa.eu/health//sites/health/files/antimicrobial_resistance/docs/2015_prudent_use_guidelines_en.pdf. Accessed 6 June 2019

  • OIE (2012) Terrestrial manual. World Organisation for Animal Health [cit. 2018-11-30]. Guideline 2.1. Laboratory Methodologies for Bacterial Antimicrobial Susceptibility Testing. http://www.oie.int/fileadmin/Home/fr/Our_scientific_expertise/docs/pdf/GUIDE_2.1_ANTIMICROBIAL.pdf. Accessed 6 June 2019

  • Opens Helix I (2015) Roche gobbles Smarticles. New Yorker 26:186

    Google Scholar 

  • Pokludova L, Pratova H, Kucharovicova I, Nedbalcova K, Bures J (2018) Recommendation for sample collection for microbiologic examination, interpretation of results of bacterial susceptibility testing in small animal practises. Veterinarni klinika 15:13–21. [publication in Czech]

    Google Scholar 

  • Price CS, Kon SE, Metzger S (2014) Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells. J Microbiol Methods 98:50–58

    Article  CAS  PubMed  Google Scholar 

  • Puttaswamy S, Lee B, Amighi B, Chakraborty S, Sengupta S (2018) Novel electrical method for the rapid determination of minimum inhibitory concentration (MIC) and assay of bactericidal/bacteriostatic activity. J Biosens Bioelectron S 2:003

    Google Scholar 

  • Rohner P, Herter C, Auckenthaler R, Pechere JC, Waldvogel FA, Lew DP (1989) Synergistic effect of quinolones and oxacillin on methicillin-resistant Staphylococcus species. Antimicrob Agents Chemother 33:2037–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CB, Harris K, Khera P, Strenn KS (2001) Rapid antimicrobial ausceptibility tests by mass measurement on a 96-well plate. Nature Nanotechnol 18:222

    Google Scholar 

  • Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, Gaastra W (2010) Assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 65:601–604

    Article  CAS  PubMed  Google Scholar 

  • Siberry GK, Tekle T, Caroll K, Dick J (2003) Failure of clindamycin treatment of meticillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis 37:1257–1260

    Article  PubMed  Google Scholar 

  • Sinn I, Albertson T, Kinnunen P, Breslauer DN, McNaughton BH, Burns M, Kopelman R (2012) Asynchronous magnetic bead rotation microviscometer for rapid, sensitive, and label-free studies of bacterial growth and drug sensitivity. Anal Chem 84:5250–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syal K, Wang W, Shan X, Wang S, Chen HY, Tao N (2015a) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137

    Article  CAS  PubMed  Google Scholar 

  • Syal K, Iriya R, Yang Y, Yu H, Wang S, Haydel SE, Chen HY, Tao N (2015b) Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale. ACS Nano 10:845–852

    Article  PubMed  CAS  Google Scholar 

  • Syal K, Mo M, Yu H, Iriya R, Jing W, Guodong S, Wang S, Grys TE, Haydel SE, Tao N (2017) Current and emerging techniques for antibiotic susceptibility tests. Theranostics 7:1795–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toutain PL, Bousqued-Melou A, Damborg P, Ferran AA, Mevius D, Pelligard L, Veldman KT, Lees P (2017) En route towards European clinical breakpoints for veterinary antimicrobial susceptibility testing: a position paper explaining the VetCAST approach. Front Microbiol 8:1–13

    Article  Google Scholar 

  • Von Ah U, Wirz D, Daniels A (2009) Isothermal micro calorimetry—a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol 9:106

    Article  CAS  Google Scholar 

  • Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, Zhang S, Shen J, Shen Z, Wang Y (2018) Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microb Infect 7:122

    Google Scholar 

  • Watts JL, Sweeney MT, Lubbers BV (2018) Antimicrobial susceptibility testing of bacteria of veterinary origin. Microbiol Spectr 6. https://doi.org/10.1128/microbiolspec.ARBA-0001-2017

  • Worthington RJ, Melander C (2013) Combination approaches to combat multi-drug resistant bacteria. Trends Biotechnol 31:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, Malhotra-Kumar S (2016) Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 21:30280

    Article  Google Scholar 

  • Xu F, Zeng X, Hinenoya A, Lin J (2018) MCR-1 confers cross-resistance to bacitracin, a widely used in-feed antibiotic. mSphere 3:e00411–e00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN (2018) Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother 73:1791–1795

    Article  CAS  PubMed  Google Scholar 

  • Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y (2017) Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio 8:e00543–e00517

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Nedbalcová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nedbalcová, K., Pokludová, L. (2020). Laboratory Investigations and Result Interpretation. In: Pokludová, L. (eds) Antimicrobials in Livestock 1: Regulation, Science, Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-46721-0_8

Download citation

Publish with us

Policies and ethics