Skip to main content

Abstract

Preventive measures and health programmes should help significantly to keep animals healthy. If animal welfare principles and good animal husbandry practices are also followed, minimal or no use of antimicrobials can be, with high probability, achieved. Setting priorities in biosecurity, which fits exact conditions of farm/husbandry is vital. Thorough mechanic cleaning, rational use of disinfection, disinsection and deratisation, proper ventilation and keeping the proper temperature and humidity contribute to keep good environment both in old stables and hi-tech husbandries. Health programmes, including vaccination tailored for local conditions, animal species and technologies used in the respective husbandry should be defined by educated veterinarians, specialised not only on treatment, but also on preventive medicine, use of alternatives to antimicrobials and management. Close cooperation of vets, farmers and people taking immediate care of animals and facilities is the basic prerequisite of the effectivity of such system. Therefore, tools for motivation and socio-economical aspects also belong among the key elements for effective preventive measures, which finally can help to minimise or skip the use of antimicrobials and help to combat antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajzen I (1991) The theory of planned behavior. Organ Behav Hum Decis Process 50(2):179–211

    Article  Google Scholar 

  • Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li S, Haesebrouck F, Van Immerseel F, Croubels S (2014) The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 6(2):430–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsenakis I, Boyen F, Haesebrouck F, Maes DGD (2018) Autogenous vaccination reduces antimicrobial usage and mortality rates in a herd facing severe exudative epidermitis outbreaks in weaned pigs. Vet Rec 182:744

    Article  PubMed  PubMed Central  Google Scholar 

  • ASOA (2017) Alliance to save our antibiotics: real farming solutions to antibiotic misuse, what farmers and supermarkets must do. Briefing 28 p. https://www.soilassociation.org/media/14072/asoa-real-farming-solutions-to-antibiotic-misuses-what-farmers-supermarkets-must-do-091117pdf. Accessed 22 July 2019

  • AVMA (2019) American Veterinary Medical Association: Animal welfare: seeing the forest and the trees. AVMA 6002482862. https://www.avma.org/KB/Resources/Reference/AnimalWelfare/Documents/animal_welfare_brochurepdf. Accessed 22 July 2019

  • Bednarczyk M, Stadnicka K, Kozlowska I, Abiuso C, Tavaniello S, Dankowiakowska A et al (2016) Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal 10:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Benjamin M, Yik S (2019) Precision livestock farming in swine welfare: a review for swine practitioners. Animals 9:133

    Article  PubMed Central  Google Scholar 

  • Berckmans D (2014) Precision livestock farming technologies for welfare management in intensive livestock systems. Scientific and Technical review of the Office International des Epizooties 33(1):189–196

    Article  CAS  Google Scholar 

  • Bergevoet R, van Asseldonk M, Bondt N, van Horne P, Hoste R, de Lauwere C, Puister-Jansen L (2019) Wageningen economic research. Policy paper, Economics of antibiotic use, 2019-026. https://edepot.wur.nl/475403. Accessed 22 July 2019

  • Bernardini C, Grilli E, Duvigneau JC, Zannoni A, Tugnoli B, Gentilini F (2014) Cellular stress marker alteration and inflammatory response in pigs fed with an ochratoxin contaminated diet. Res Vet Sci 97:244–250

    Article  CAS  PubMed  Google Scholar 

  • Bikard D, Barrangou R (2017) Using CRISPR-cas systems as antimicrobials. Curr Opin Microbiol 37:155–160

    Article  CAS  PubMed  Google Scholar 

  • Borst LB, Mitsu Suyemoto M, Chen LR, Barnes HJ (2019) Vaccination of breeder hens with a polyvalent killed vaccine for pathogenic Enterococcus cecorum does not protect offspring from enterococcal spondylitis. Avian Pathol 48(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Bossé JT, Li Y, Sárközi R, Fodor L, Lacouture S, Gottschalk M, Casas Amoribieta M, Angen Ø, Nedbalcova K, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, BRaDP1T Consortium (2018) Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet Microbiol 217:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Caekebeke N (2019) Use of a livestock-adapted ADKAR ® change management model for reducing AMU. AACTING Bern, p 1–31. https://aacting.org/swfiles/files/AACTING_Bern_Caekebeke_71.pdf. Assessed May 2020

  • Callaway TR, Edrington TS, Anderson RC, Harvey RB, Genovese KJ, Kennedy CN, Venn DW, Nisbet DJ (2008) Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim Health Res Rev 9:217–225

    Article  CAS  PubMed  Google Scholar 

  • Catry B, Dewulf J, Maes D, Pardon B, Callens B, Vanrobaeys M et al (2016) Effect of antimicrobial consumption and production type on antibacterial resistance in the bovine respiratory and digestive tract. PLoS One 11(1)

    Google Scholar 

  • Cervantes HM (2015) Antibiotic-free poultry production: is it sustainable? J Appl Poultry Res 24(1):91–97

    Article  CAS  Google Scholar 

  • Collineau L (2016) Quantify, explain and reduce antimicrobial usage in pig production in Europe. PhD Thesis. https://www.theses.fr/2016ONIR091F.pdf. Accessed 22 July 2019

  • Coyne LA, Latham SM, Williams NJ, Dawson S, Donald IJ, Pearson RB, Pinchbeck GL (2016) Understanding the culture of antimicrobial prescribing in agriculture: a qualitative study of UK pig veterinary surgeons. J Antimicrob Chemother 71(11):3300–3312. https://doi.org/10.1093/jac/dkw300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne LA, Latham SM, Dawson S, Donald IJ, Pearson RB, Smith RF, Williams NJ, Pinchbeck GL (2018) Antimicrobial use practices, attitudes and responsibilities in UK farm animal veterinary surgeons. Prev Vet Med 161:115–126

    Article  CAS  PubMed  Google Scholar 

  • Cvjetković V, Sipos S, Szabó I, Sipos W (2018) Clinical efficacy of two vaccination strategies against Mycoplasma hyopneumoniae in a pig herd suffering from respiratory disease. Porcine Health Manag 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • DAFC (2017) Pig industry quality manual, 5th edn, 1st issue. Danish Agriculture & Food Council, Copenhagen. https://www.lf.dk/~/media/lf/aktuelt/publikationer/svinekod/2018/qsg-english-2017.pdf?la=da. Accessed 22 July 2019

  • DAFC (2018) SPF system Denmark, CHR lookup. http://spfsus.dk/en. Accessed 22 July 2019

  • DANMAP (2014). http://www.danmap.org/Downloads/Reports.aspx. Accessed 22 July 2019

  • Davies DS, Grant J, Catchpole M (2013) The drugs don’t work. A global threat. Penguin, London

    Google Scholar 

  • De Briyne N, Atkinson J, Pokludova L, Borriello S (2014) Paper: Antibiotics used most commonly to treat animals in Europe. Vet Rec 175:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Diarra MS, Malouin F (2014) Antibiotics in Canadian poultry productions and anticipated alternatives. Front Microbiol 5:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieste-Perez L, Frankena K, Blasco J, Muňoz P, de Jong M (2016) Efficacy of antibiotic treatment and test based culling strategies for eradicating brucellosis in commercial swine herds. Prev Vet Med 126:105–110

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2009) European Food Safety Authority: Panel on Animal Health and Animal Welfare, Scientific Opinion on the overall effects of farming systems on dairy cow welfare and disease. EFSA J 1143:1–38

    Google Scholar 

  • EMA, EFSA (2017) European Medicines Agency and European Food Safety Authority: Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 15(1):4666

    Google Scholar 

  • EPRUMA (2019) European platform for responsible use of medicines in animals: best-practice framework for the use of vaccines in animals, 8 p. https://www.eprumaeu/wp-content/uploads/2019/04/Best-practice-framework-on-vaccines_23-APRIL-2019pdf. Accessed 22 July 2019

  • European Commission (2014) Discussion paper on Progress under the Animal Health Strategy for the European Union (2007–2013) where “Prevention is better than cure” and possible future steps. Directorate G – Veterinary and International Affairs Unit G2 – Animal health. https://ec.europa.eu/food/animals/health/strategy2007-2013_en. Accessed 22 July 2019

  • European Commission (2015) Guidelines for the prudent use of antimicrobials in veterinary medicine. Eur Official J, 2015/C 299/04. https://ec.europa.eu/health//sites/health/files/antimicrobial_resistance/docs/2015_prudent_use_guidelines_en.pdf. Accessed 22 July 2019

  • FAO (2010) Food and Agriculture Organization of the United Nations/World Organisation for Animal Health/World Bank. Good practices for biosecurity in the pig sector – Issues and options in developing and transition countries. FAO Animal Production and Health Paper No. 169, Rome

    Google Scholar 

  • FAO (2019) FAO and Denmark Ministry of Environment and Food – Danish Veterinary and Food Administration: Tackling antimicrobial use and resistance in pig production: lessons learned from Denmark. Rome. 52 pp. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Federation of Veterinarians of Europe (2016a) Antimicrobial use in food-producing animals, FVE input to RONAFA report. EFSA J 15(1)

    Google Scholar 

  • Federation of Veterinarians of Europe (2016b) Relationship between animal welfare and the use of antibiotics in food animals. https://www.fve.org/cms/wp-content/uploads/063-FVE_AWW-Position-on-resistance-and-animal-welfare_final.pdf. Accessed 4 June 2019

  • Fertner M, Sanchez J, Boklund A, Stryhn H, Dupont N, Toft N (2015) Persistent spatial clusters of prescribed antimicrobials among Danish pig farms – a register-based study. PLoS One 10:e0136834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser D (2006) Animal welfare assurance programs in food production: a framework for assessing the options. Anim Welf 15:93–104

    CAS  Google Scholar 

  • Friedman D, Kanwat C, Headric M, Patterson N, Neely J, Smith L (2007) Importance of prudent antibiotic use on dairy farms in South Carolina: a pilot project on farmers’ knowledge, attitudes and practices. Zoonoses Public Health 54:366–375

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Babiuk L, van Drunen Littel-van den Hurk S, Gerdts V (2017) A novel combination adjuvant platform for human and animal vaccines. Vaccine 35(Pt A):4486–4489

    Google Scholar 

  • Hampson DJ (2018) The spirochete Brachyspira pilosicoli, enteric pathogen of animals and humans. Clin Microbiol Rev 31:e00087-17. https://doi.org/10.1128/CMR.00087-17. Accessed 22 June 2019

  • Hassanein SM, Soliman NK (2010) Effect of probiotic (Saccharomyces Cerevisiae) adding to diets on intestinal microflora and performance of hy-line layers hens. J Am Sci 6

    Google Scholar 

  • Hoelzer K, Bielke L, Blake DP, Cox E, Cutting SM, Devriendt B, Erlacher-Vindel E, Goossens E, Karaca K, Lemiere S, Metzner M, Raicek M, Collell Suriñach M, Wong NM, Gay C, Van Immerseel F (2018a) Vaccines as alternatives to antibiotics for food producing animals. Part 1: Challenges and needs. Vet Res 49(1):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoelzer K, Bielke L, Blake DP, Cox E, Cutting SM, Devriendt B, Erlacher-Vindel E, Goossens E, Karaca K, Lemiere S, Metzner M, Raicek M, Collell Suriñach M, Wong NM, Gay C, Van Immerseel F (2018b) Vaccines as alternatives to antibiotics for food producing animals. Part 2: New approaches and potential solutions. Vet Res 49(1):70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen VF, de Knegt L, Andersen VD, Wingstrand A (2014) Temporal relationship between decrease in antimicrobial prescription for Danish pigs and the “Yellow Card” legal intervention directed at reduction of antimicrobial use. Prev Vet Med 117:554–564

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zheng W, Kuang L, Ma H, Liang H (2017) Hydrophilic phage-mimicking membrane active antimicrobials reveal nanostructure-dependent activity and selectivity. ACS Infect Dis 3:676–687

    Article  CAS  PubMed  Google Scholar 

  • Jorge S, Dellagostin OA (2017) The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov 1:6–13

    Article  Google Scholar 

  • Karavolias J, Salois MJ, Baker KT, Watkins K (2018) Raised without antibiotics: impact on animal welfare and implications for food policy. Transl Anim Sci 2(4):337–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Kontturi M, Junni R, Simojoki H, Malinen E, Seuna E, Klitgaard K, Kujala-Wirth M, Soveri T, Pelkonen S (2019) Bacterial species associated with interdigital phlegmon outbreaks in Finnish dairy herds. BMC Vet Res 15(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovacs-Nolan J, Mine Y (2012) Egg Yolk Antibodies for Passive Immunity. Annu Rev Food Sci Technol 3(1):163–182

    Article  CAS  PubMed  Google Scholar 

  • Kruse AB, Kristensen CS, Lavlund U, Stege H (2019) Antimicrobial prescription data in Danish national database validated against treatment records in organic pig farms and analysed for associations with lesions found at slaughter. BMC Vet Res 15:218

    Article  PubMed  PubMed Central  Google Scholar 

  • La T, Phillips ND, Coiacetto F, Hampson DJ (2019a) An atypical weakly haemolytic strain of Brachyspira hyodysenteriae is avirulent and can be used to protect pigs from developing swine dysentery. Vet Res 50(1):47. https://doi.org/10.1186/s13567-019-0668-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La T, Phillips ND, Hampson DJ (2019b) Vaccination of chickens with the 34 kDa carboxy-terminus of Bpmp72 reduces colonization with Brachyspira pilosicoli following experimental infection. Avian Pathol 48(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Lam TJGM, Jansen J, Wessels RJ (2017) The RESET Mindset Model applied on decreasing antibiotic usage in dairy cattle in the Netherlands. Ir Vet J 70:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW (2017) Membrane active antimicrobial peptides: translating mechanistic insights to design

    Google Scholar 

  • Lokhorst C (2018) An introduction to smart dairy farming. Van Hall Larenstein University of Applied Sciences, 108 p. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&ved=2ahUKEwiOw4mO6sjjAhXww8QBHdzhCNcQFjAMegQIAxAC&url=https%3A%2F%2Fwww.greeni.nl%2Fwebopac%2FMetaDataEditDownload.csp%3Ffile%3D2%3A144032%3A1&usg=AOvVaw2rlyOpFA2ejzJnEHagR97S. Accessed 28 June 2019

  • Marquardt RR, Li S (2018) Antimicrobial resistance in livestock: advances and alternatives to antibiotics. Anim Front 8(2):30–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Gayatri S, Rouissi T et al (2018) Use of antibiotics in broiler production: global impacts and alternatives. Anim Nutr 4:170–178. https://doi.org/10.1016/j.aninu.2018.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Meissonnier GM, Pinton P, Laffitte J, Cossalter AM, Gong YY, Wild CP (2008) Immunotoxicity of aflatoxin B1: impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol Appl Pharmacol 231:142–149

    Article  CAS  PubMed  Google Scholar 

  • Mellor DJ (2016) Updating animal welfare thinking: moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals (Basel) 6(3):21

    Article  Google Scholar 

  • Midtlyng PJ, Grave K, Horsberg HE (2011) What has been done to minimize the use of antibacterial and antiparasitic drugs in Norwegian aquaculture? Aquac Res 42:28–34

    Article  Google Scholar 

  • Miele M, Evans A (2010) When foods become animals, ruminations on ethics and responsibility in care-full spaces of consumption. Ethics, Place and Environment 13(2):1–20

    Article  Google Scholar 

  • Mohammadagheri N, Najafi R, Najafi G (2016) Effects of dietary supplementation of organic acids and phytase on performance and intestinal histomorphology of broilers. Vet Res Forum 7:189–195

    PubMed  PubMed Central  Google Scholar 

  • Moreno MA (2014) Opinions of Spanish pig producers on the role, the level and the risk to public health of antimicrobial use in pigs. Res Vet Sci 97:26–31

    Article  PubMed  Google Scholar 

  • Nava GM, Attene-Ramos MS, Gaskins HR, Richards JD (2009) Molecular analysis of microbial community structure in the chicken ileum following organic acid supplementation. Vet Microbiol 137:345–353

    Article  CAS  PubMed  Google Scholar 

  • O’Neill J (2015) Securing new drugs for future generations: the pipeline of antibiotics. Wellcome Trust, London. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20coverpdf. Accessed 22 July 2019

  • OIE (2013) Terrestrial Animal Health Code: Biosecurity procedures in poultry production. http://www.oieint/indexphp?id=169&L=0&htmfile=chapitre_biosecu_poul_productionhtm. Accessed 22 July 2019

  • OIE (2014) Terrestrial Animal Health Code: General recommendations on disinfection and disinsection. http://www.oieint/indexphp?id=169&L=0&htmfile=chapitre_disinfect_disinsecthtm. Accessed 22 July 2019

  • OIE (2015) Report of the meeting of the OIE ad Hoc group on priorisation of diseases for which vaccines could reduce antimicrobial use in animals. http://www.oieint//fileadmin/SST/adhocreports/Diseases%20for%20which%20Vaccines%20could%20reduce%20Antimicrobial%20Use/AN/AHG_AMUR_Vaccines_Apr2015pdf. Accessed 22 July 2019

  • OIE (2018a) Report of the meeting of the OIE ad Hoc group on priorisation of diseases for which vaccines could reduce antimicrobial use in cattle, sheep and goats. http://www.oieint//fileadmin/SST/adhocreports/Diseases%20for%20which%20Vaccines%20could%20reduce%20Antimicrobial%20Use/AN/AHG_AMUR_Vaccines_ruminants_May2018pdf. Accessed 22 July 2019

  • OIE (2018b) Terrestrial Animal Health Code: Vaccination. http://www.oieint/indexphp?id=169&L=0&htmfile=chapitre_vaccinationhtm. Accessed 22 July 2019

  • OIE (2019) Terrestrial Animal Health Code: Animal welfare. http://www.oieint/indexphp?id=169&L=0&htmfile=titre_17htm. Accessed 22 July 2019

  • Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS (2017) Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 7:44929. https://doi.org/10.1038/srep44929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierron A, Alassane-Kpembi I, Oswald IP (2016) Impact of mycotoxin on immune response and consequences for pig health. Anim Nutr (Zhongguo xu mu shou yi xue hui) 2(2):63–68

    Google Scholar 

  • Postma M, Backhans A, Collineau L, Loesken S, Sjölund M, Belloc C, Emanuelson U, Grosse Beilage E, Stärk KDC, Dewulf J (2016) The biosecurity status and its associations with production and management characteristics in farrow-to-finish pig herds. Animal 10:478–489

    Article  CAS  PubMed  Google Scholar 

  • Raith J, Trauffler M, Firth CL, Lebl K, Schleicher C, Köfer J (2016) Influence of porcine circovirus type 2 vaccination on the level of antimicrobial consumption on 65 Austrian pig farms. Vet Rec 178:504

    Article  CAS  PubMed  Google Scholar 

  • Rasschaert G, Michiels J, Tagliabue M, Missotten J, De Smet S, Heyndrickx M (2016) Effect of Organic Acids on Salmonella Shedding and Colonization in Pigs on a Farm with High Salmonella Prevalence. J Food Prot 79:51–55

    Article  CAS  PubMed  Google Scholar 

  • Ratna A, Arora SK (2018) Immunomodulators as therapeutic option in parasitic infections. J Bacteriol Vaccin Res 1(1):1002

    Google Scholar 

  • Rieckmann K, Pendzialek SM, Vahlenkamp T, Baums CG (2020) A critical review speculating on the protective efficacies of autogenous Streptococcus suis bacterins as used in Europe. Porcine Health Management 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Roerink F, Morgan CL, Knetter SM, Passat MH, Archibald AL, Ait-Ali T, Strait EL (2018) A novel inactivated vaccine against Lawsonia intracellularis induces rapid induction of humoral immunity, reduction of bacterial shedding and provides robust gut barrier function. Vaccine 36(11):1500–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo-Gimeno C, Postma M, Dewulf J, Hogeveen H, Lauwers L, Wauters E (2016) Farm-economic analysis of reducing antimicrobial use whilst adopting improved management strategies on farrow-to-finish pig farms. Prev Vet Med 129:74–87

    Article  PubMed  Google Scholar 

  • RUMA (2016) RUMA Guidelines: Responsible use of vaccines and vaccinations in farm animal production. https://www.ruma.org.uk/wp-content/uploads/2014/09/farm-vaccine-long.pdf

  • Rushton J (2015) Anti-microbial use in animals: how to assess the trade-offs. Zoonoses Public Health 62(Suppl 1):10–21

    Article  PubMed  PubMed Central  Google Scholar 

  • SAPHIR (2019) EC-CORDIS: Strengthening animal production and health through the immune response: Fact sheet. https://cordis.europa.eu/project/rcn/193183/factsheet/en. Accessed 22 July 2019

  • Sasaki Y, Sekiguchi S, Uemura R, Sueyoshi M (2015) The effect of depopulation and restocking on reproductive and growth performances on Japanese commercialswine farms. J Vet Med Sci 78:333–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherpenzeel CGM, Santman-Berends IMGA, Lam TGJM (2017) Veterinarians’ attitudes toward antimicrobial use and selective dry cow treatment in the Netherlands. J Dairy Sci 101:1–10

    Google Scholar 

  • Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Singh Gill JP, Pallab R, Puniya AK, Panwar H (2018) Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci 08:fvets.2017.00237

  • Smith R, Coast J (2013) The true cost of antimicrobial resistance. BMJ 346:f1493

    Article  PubMed  Google Scholar 

  • Swinkels JM, Hilkens A, Zoche-Golob V, Krömker V, Buddiger J, Jansen J, Lam TJGM (2015) Social influences on the duration of antibiotic treatment of clinical mastitis in dairy cows. J Dairy Sci 98:2369–2380

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Barrera A, Pennings JME, Hofenk D (2016) Understanding producers’ motives for adopting sustainable practises: the role of expected rewards, risk perception and risk tolerance. Eur Rev Agric Econ 43:359–382

    Article  Google Scholar 

  • van Rennings L, von Munchhausen C, Ottilie H, Hartmann M, Merle R, Honscha W, Kasbohrer A, Kreienbrock L (2015) Cross-sectional study on antibiotic usage in pigs in Germany. PLoS One 10:e0119114

    Google Scholar 

  • Vapnek J, Chapman M (2010) for the Development Law service Food and Agriculture Organization of the United Nations Legal Office: Legislative and regulatory options for animal welfare. Legislative Study 104. http://www.fao.org/3/i1907e/i1907e00.pdf. Accessed 22 July 2019

  • Visschers VHM, Backhans A, Collineau L, Loesken S, Nielsen EO, Postma M, Belloc C, Dewulf J, Emanuelson U, Grosse Beilage E, Siegrist M, Sjölund M, Stärk KDC (2016) A comparison of pig farmers’ and veterinarians’ perceptions and intentions to reduce antimicrobial usage in six European countries. Zoonoses Public Health 63:534–544

    Article  CAS  PubMed  Google Scholar 

  • Welfare Quality (2009) Aims and objectives Welfare Quality project. www.welfarequality.net. Accessed 22 July 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Pokludová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pokludová, L. (2020). Prevention Is Better Than Cure. In: Pokludová, L. (eds) Antimicrobials in Livestock 1: Regulation, Science, Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-46721-0_6

Download citation

Publish with us

Policies and ethics