Skip to main content

Plate Boundary Interactions Through Geologic History

  • Chapter
  • First Online:
Hadean Earth

Abstract

Estimates of when plate tectonics began range from the last 20% of Earth history to within the first 5%. While there is no observation that precludes plate tectonics from operating at 4.3 Ga, evidence that it was is indirect. Although subduction initiation is a robust feature of the modern plate tectonic system and we can calculate with some accuracy when oceanic lithosphere attains negative buoyancy, we don’t yet understand how strong the lithosphere weakens sufficiently for subduction to initiate. Most approaches used to estimate when Earth first entered the mobile lid regime—preservation of modern plate tectonic features, detrital zircon age spectra, trace element and radiogenic isotope geochemistry, atmosphere-crust-mantle exchange, and model-based estimates—can be interpreted in multiple ways and are all underlain by assumptions that cannot be independently tested. All share the flaw that absence of evidence is not evidence of absence. Of special concern is that the Precambrian geologic record is likely biased to rock compositions most likely to resist deformation and thus exposure to erosion at newly rifted continental margins where loss to subduction erosion could occur. Thus any look-back comparison is flawed to some degree by a preservation bias. A more recently recognized limitation is the failure to consider how a hotter, early Earth would differ petrologically from, say, Phanerozoic behavior (e.g., lower incompatible trace element concentrations in mantle magmas, higher geothermal gradients). Historically, computational limitations in early geophysical modelling methods led to skepticism regarding the possibility of plate tectonics on early Earth. Influenced by this view, the geologic community was reluctant to take a dynamic view of the preserved crustal record, instead inferring the apparent absence of a Hadean rock record as evidence that there never was one. The unknown extent to which ancient continental crust was recycled into the mantle and thoroughly mixed, the abovementioned selection biases in the rock record, and the assumption of uniformitarian conditions throughout Earth history limit virtually all continental growth estimates to providing only lower age bounds and thus minimum estimate on the initiation age of subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarède, F. (1998). The growth of continental crust. Tectonophysics, 296, 1–14.

    Article  Google Scholar 

  • Arevalo, R., McDonough, W. F., Stracke, A., Willbold, M., Ireland, T. J., & Walker, R. J. (2013). Simplified mantle architecture and distribution of radiogenic power. Geochemistry, Geophysics, Geosystems, 14, 2265–2285.

    Article  Google Scholar 

  • Armstrong, R. L. (1991). The persistent myth of crustal growth. Australian Journal of Earth Science, 38, 613–630.

    Article  Google Scholar 

  • Baes, M., Gerya, T., & Sobolev, S. V. (2016). 3-D thermo-mechanical modeling of plume-induced subduction initiation. Earth and Planetary Science Letters, 453, 193–203.

    Article  Google Scholar 

  • Bercovici, D., Ricard, Y. (2014). Plate tectonics, damage and inheritance. Nature, 508(7497), 513–516.

    Google Scholar 

  • Bercovici, D., & Ricard, Y. (2016). Grain-damage hysteresis and plate tectonic states. Physics of the Earth and Planetary Interiors, 253, 31–47.

    Article  Google Scholar 

  • Brown, M. (2006). Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34(11), 961.

    Google Scholar 

  • Brown, M. (2007). Metamorphism, plate tectonics, and the supercontinent cycle. Earth Science Frontiers, 14(1), 1–18.

    Google Scholar 

  • Brown, M. (2008). Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: When did Earth first adopt a plate tectonics mode of behavior. Geological Society of America Special Paper, 440, 97–128.

    Google Scholar 

  • Condie, K. C. (1998). Episodic continental growth and supercontinents: A mantle avalanche connection? Earth and Planetary Science Letters, 163, 97–108.

    Article  Google Scholar 

  • Condie, K. C. (2008). Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids. Geology,36(8), 611–614.

    Google Scholar 

  • Condie, K. C. (2018). A planet in transition: the onset of plate tectonics on earth between 3 and 2 Ga? Geoscience Frontiers, 9(1), 51–60.

    Google Scholar 

  • Condie, K. C., & Kröner, A. (2008). When did plate tectonics begin? Evidence from the geologic record. Geological Society of America Special Paper, 440, 281–294.

    Google Scholar 

  • Condie, K. C., & Pease, V. (2008). When did plate tectonics begin on planet Earth? Geological Society of America Special Paper, 440, 294.

    Google Scholar 

  • Condie, K. C., O'Neill, C., & Aster, R. C. (2009). Evidence and implications for a widespread magmatic shutdown for 250 my on earth. Earth and Planetary Science Letters, 282(1–4), 294–298.

    Google Scholar 

  • Condie, K. C., & Aster, R. C. (2010). Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Research, 180(3–4), 227–236.

    Google Scholar 

  • Condie, K. C., Belousova, E., Griffin, W. L., & Sircombe, K. N. (2009a). Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Research, 15, 228–242.

    Article  Google Scholar 

  • Condie, K. C., O’Neill, C., & Aster, R. C. (2009b). Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282, 294–298.

    Article  Google Scholar 

  • Condie, K. C., Arndt, N., Davaille, A., & Puetz, S. J. (2017). Zircon age peaks: Production or preservation of continental crust? Geosphere, 13, 227–234.

    Article  Google Scholar 

  • Davies, G. F. (1992). On the emergence of plate tectonics. Geology, 20, 963–966.

    Article  Google Scholar 

  • Davies, G. F. (2002). Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochimica et Cosmochimica Acta, 66, 3125–3142.

    Article  Google Scholar 

  • Davies, G. F. (2006). Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth and Planetary Science Letters, 243, 376–382.

    Article  Google Scholar 

  • Deng, Z., Moynier, F., Sossi, P. A., & Chaussidon, M. (2018). Bridging the depleted MORB mantle and the continental crust using titanium isotopes.

    Google Scholar 

  • Dewey, J. F., & Spall, H. (1975). Pre-Mesozoic plate tectonics: How far back in Earth history can the Wilson Cycle be extended? Geology, 3, 422–424.

    Article  Google Scholar 

  • de Wit Maarten, J. (1998). On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict?. Precambrian Research, 91(1–2), 181–226.

    Google Scholar 

  • Dhuime, B., Wuestefeld, A., & Hawkesworth, C. J. (2015). Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8, 552–555.

    Article  Google Scholar 

  • Farquhar, J., Wing, B. A., McKeegan, K. D., Harris, J. W., Cartigny, P., & Thiemens, M. H. (2002). Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298, 2369–2372.

    Article  Google Scholar 

  • Fetter, A. H., Van Schmus, W. R., Santos, T. S., Arthaud, M., & Nogueira Neto, J. (1997). Geologic history and framework of Ceará State: Northwest Borborema Province, NE Brazil (Extended Abstract). In South American Symposium on Isotope Geology (pp. 112–114), Brazil.

    Google Scholar 

  • Forsyth, D., & Uyeda, W. S. (1975). On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 4, 163–200.

    Article  Google Scholar 

  • Garnero, E. J., & McNamara, A. K. (2008). Structure and dynamics of Earth’s lower mantle. Science, 320(5876), 626–628.

    Google Scholar 

  • Gerya, T. (2011). Future directions in subduction modeling. Journal of Geodynamics, 52(5), 344–378.

    Google Scholar 

  • Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., & Whattam, S. A. (2015). Plate tectonics on the earth triggered by plume-induced subduction initiation. Nature, 527(7577), 221–225.

    Google Scholar 

  • Greber, N. D., Dauphas, N., Bekker, A., Ptáček, M. P., Bindeman, I. N., & Hofmann, A. (2017). Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science, 357, 1271–1274.

    Article  Google Scholar 

  • Griffin, W. L., O’Reilly, S. Y., Abe, N., Aulbach, S., Davies, R. M., Pearson, N. J. et al. (2003). The origin and evolution of Archean lithospheric mantle. Precambrian Research, 127(1–3), 19–41.

    Google Scholar 

  • Gurnis, M., Hall, C., & Lavier, L. (2004). Evolving force balance during incipient subduction. Geochemistry, Geophysics, Geosystems, 5(7).

    Google Scholar 

  • Halla, J., van Hunen, J., Heilimo, E., & Hölttä, P. (2009). Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research, 174(1–2), 155–162.

    Google Scholar 

  • Hamilton, W. B. (1998). Archean magmatism and deformation were not products of plate tectonics. Precambrian Research, 91, 143–179.

    Article  Google Scholar 

  • Hamilton, W. B. (2011). Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos, 123, 1–20.

    Article  Google Scholar 

  • Hansen, V. L. (2007). Subduction origin on early Earth: A hypothesis. Geology, 35, 1059–1062.

    Article  Google Scholar 

  • Harrison, T. M. (2009). The Hadean crust: Evidence from >4 Ga zircons. Annual Reviews of Earth and Planetary Sciences, 37, 479–505.

    Article  Google Scholar 

  • Harrison, T. M., Bell, E. A., & Boehnke, P. (2017). Hadean zircon petrochronology. Reviews in Mineralogy and Geochemistry, 83, 329–363.

    Article  Google Scholar 

  • Hawkesworth, C., Dhuime, B., Pietranik, A., Cawood, P., Kemp, A. I. S., & Storey, C. (2010). The generation and evolution of the continental crust. Journal of Geological Society of London, 167, 229–248. https://doi.org/10.1144/0016-76492009-072.

    Article  Google Scholar 

  • Holder, R. M., Viete, D. R., Brown, M., & Johnson, T. E. (2019). Metamorphism and the evolution of plate tectonics. Nature, 572(7769), 378–381.

    Google Scholar 

  • Hynes, A. (2013). How feasible was subduction in the Archean? Canadian Journal of Earth Sciences, 51, 286–296.

    Article  Google Scholar 

  • Ishizuka, O., Tani, K., Reagan, M. K., Kanayama, K., Umino, S., Harigane, Y., et al. (2011). The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters, 306, 229–240.

    Article  Google Scholar 

  • Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L., & Smithies, R. H. (2017). Earth’s first stable continents did not form by subduction. Nature, 543, 239–242.

    Article  Google Scholar 

  • Keller, B., & Harrison, T. M. (2020). Constraining crustal silica on ancient earth. Earth and Space Science Open Archive, https://doi.org/10.31223/osf.io/75evw.

  • Keller, B., & Schoene, B. (2018). Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth and Planetary Science Letters, 481, 290–304.

    Article  Google Scholar 

  • Keller, C. B., Boehnke, P., & Schoene, B. (2017). Temporal variation in relative zircon abundance throughout Earth history. Geochemical Perspectives Letters, 3, 179–189.

    Article  Google Scholar 

  • Martin, H. (1986). Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753–756.

    Article  Google Scholar 

  • Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79, 1–24.

    Article  Google Scholar 

  • McKenzie, D. P. (1977). The initiation of trenches: A finite amplitude instability. In M. Talwani & W. C. Pittman (Eds.), Island arcs, deep sea trenches, and back-arc basins (pp. 57–61). Washington, DC: Maurice Ewing Ser. I., AGU.

    Chapter  Google Scholar 

  • Moresi, L., & Solomatov, V. S. (1998). Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus. Geophysical Journal International, 133, 669–682.

    Article  Google Scholar 

  • Morgan, P. (1985). Crustal radiogenic heat production and the selective survival of ancient continental crust. Journal of Geophysical Research, 90, C561–C570.

    Article  Google Scholar 

  • Morgan, P. (1989). Thermal factors controlling crustal stabilization. In 28th International Geological Congress, Washington, DC, Abstracts 3, 333.

    Google Scholar 

  • Moyen, J. F. (2011). The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123, 21–36.

    Article  Google Scholar 

  • Moyen, J. F., Stevens, G., & Kisters, A. (2006). Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature, 442, 559–562.

    Article  Google Scholar 

  • Nakagawa, T., & Tackley, P. J. (2015). Influence of plate tectonic mode on the coupled thermochemical evolution of Earth’s mantle and core. Geochemistry, Geophysics, Geosystems, 16, 3400–3413.

    Article  Google Scholar 

  • O’Neil, J., Francis, D., & Carlson, R. W. (2011). Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. Journal of Petrology, 52, 985–1009.

    Article  Google Scholar 

  • O'Neill, C., Debaille, V., & Griffin, W. (2013). Deep earth recycling in the Hadean and constraints on surface tectonics. American Journal of Science, 313(9), 912–932.

    Google Scholar 

  • O’Neill, C., & Debaille, V. (2014). The evolution of Hadean-Eoarchaean geodynamics. Earth and Planetary Science Letters, 406, 49–58.

    Article  Google Scholar 

  • O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H., & Lee, C.-T. A. (2007). Episodic Precambrian subduction. Earth and Planetary Science Letters, 262, 552–562.

    Article  Google Scholar 

  • Palin, R. M., & White, R. W. (2016). Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nature Geoscience, 9, 60–64.

    Article  Google Scholar 

  • Ptáček, M.P., Dauphas, N., & Greber, N.D. (2020). Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions. Earth and Planetary Science Letters, 539, 116090.

    Google Scholar 

  • Puetz, S. J., Condie, K. C., Pisarevsky, S., Davaille, A., Schwarz, C. J., & Ganade, C. E. (2017). Quantifying the evolution of the continental and oceanic crust. Earth-Science Reviews, 164, 63–83.

    Article  Google Scholar 

  • Rapp, R. P., & Watson, E. B. (1995). Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891–931.

    Article  Google Scholar 

  • Schaefer, L., & Elkins-Tanton, L. T. (2018). Magma oceans as a critical stage in the tectonic development of rocky planets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20180109.

    Article  Google Scholar 

  • Shirey, S. B., & Richardson, S. H. (2011). Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333, 434–436.

    Article  Google Scholar 

  • Silver, P. G., & Behn, M. D. (2008). Intermittent plate tectonics? Science, 319, 85–88.

    Article  Google Scholar 

  • Sizova, E., Gerya, T., Brown, M., & Perchuk, L. L. (2010). Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116, 209–229.

    Article  Google Scholar 

  • Sobolev, S. V. (2016). Plate tectonics initiation as running hurdles. In Workshop on the Origin and Evolution of Plate Tectonics, Monte Verità.

    Google Scholar 

  • Solomatov, V. (2016). Why plate tectonics is rare and how it started on earth. Bulletin of the American Physical Society, 61, 15.

    Google Scholar 

  • Stein, M., & Hofmann, A. W. (1994). Mantle plumes and episodic crustal growth. Nature, 372, 63–68.

    Article  Google Scholar 

  • Stern, R. J. (2007). When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Science Bulletin, 52, 578–591.

    Article  Google Scholar 

  • Stern, R. J. (2018). The evolution of plate tectonics. Philosophical Transactions of the Royal Society A, 376, 20170406.

    Article  Google Scholar 

  • Stern, R. J., Tsujimori, T., Harlow, G., & Groat, L. A. (2013). Plate tectonic gemstones. Geology, 41, 723–726.

    Article  Google Scholar 

  • Stern, R. J., Leybourne, M. I., & Tsujimori, T. (2016). Kimberlites and the start of plate tectonics. Geology, 44, 799–802.

    Article  Google Scholar 

  • Stern, R. J., Gerya, T., & Tackley, P. J. (2017). Tackling unanswered questions on what shapes Earth. Eos, 98. https://doi.org/10.1029/2017EO065791.

  • Stern, R. J., & Gerya, T. (2018). Subduction initiation in nature and models: a review. Tectonophysics, 746, 173–198.

    Google Scholar 

  • Stevenson, D. J. (1983). The nature of the earth prior to the oldest known rock record—The Hadean earth. In Earth’s earliest biosphere: Its origin and evolution (pp. 32–40). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tang, M., Chen, K., & Rudnick, R. L. (2016). Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351, 372–375.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics (p. 412). Cambridge University Press.

    Google Scholar 

  • Turner, S., Rushmer, T., Reagan, M., & Moyen, J. F. (2014). Heading down early on? Start of subduction on Earth. Geology, 42, 139–142.

    Article  Google Scholar 

  • Ueda, K., Gerya, T., & Sobolev, S. V. (2008). Subduction initiation by thermal-chemical plumes: Numerical studies. Physics of the Earth and Planetary Interiors, 171, 296–312.

    Article  Google Scholar 

  • van Hunen, J., & van den Berg, A. P. (2008). Plate tectonics on the early earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103(1–2), 217–235.

    Google Scholar 

  • Van Hunen, J., & Moyen, J. F. (2012). Archean subduction: Fact or fiction? Annual Reviews of Earth and Planetary Sciences, 40, 195–219.

    Article  Google Scholar 

  • Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., & Champion, D. C. (2007). Secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, 19, 1–38.

    Article  Google Scholar 

  • Voice, P. J., Kowalewski, M., & Eriksson, K. A. (2011). Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains. Journal of Geology, 119, 109–126.

    Article  Google Scholar 

  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.

    Article  Google Scholar 

  • Wilson, T.W. (1968). Static or mobile earth: the current scientific revolution. American Philosophical Society Proceedings, 112, 309–320.

    Google Scholar 

  • Wong, T., & Solomatov, V. S. (2016). Constraints on plate tectonics initiation from scaling laws for single-cell convection. Physics of the Earth and Planetary Interiors, 257, 128–136.

    Article  Google Scholar 

  • Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280.

    Google Scholar 

  • Yin, A. (2012). An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth. Lithosphere, 4, 553–593.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Plate Boundary Interactions Through Geologic History. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_6

Download citation

Publish with us

Policies and ethics