Skip to main content

Models of Continental Growth and Destruction

  • Chapter
  • First Online:
Hadean Earth
  • 1212 Accesses

Abstract

We don’t know with confidence the mechanisms by which primitive arc basalts are modified to produce the broadly granodioritic continental crust but there is widespread agreement that plate tectonics has been doing just that for at least the past billion years. We also don’t fully understand the structure of the continental crust; popular layered models lack mechanisms to produce such structures or to recover them following tectonic homogenization. The geochemical community long favored the view that early crust was mafic, in part owing to misconceptions regarding feldspar buoyancy on a hydrous magmatic substrate and the deep stabilization of garnet (which retards crystallization of more buoyant aluminous phases from the magma). But early felsic crusts with the potential for long term stability could have emerged via crystallization of tonalitic liquids fractionated from ultramafic magmas in equilibrium with olivine or differentiating magma sheets following large impacts into early basaltic crusts. The remarkable range of estimates of the growth history of continental crust reflects a number of influences but, generally speaking, earlier growth has been increasingly favored as new age survey methodologies became available and as the effects that crustal reworking and recycling have on apparent surface age provinces became better appreciated. Isotopic data once thought to support rapid growth at ~2.7 Ga are now recognized as equally consistent with constant volume continental crust. The longstanding misapprehension that the present-day distribution of crust formation ages is equivalent to the growth history of continents strongly influenced some estimates. Instead, today’s crust represents a running balance between new growth, internal overprinting, and crustal recycling. The difficulty in deconvolving these processes is one of the two principal challenges in establishing the growth history of continental crust. The other is that crust recycled back into the mantle and thoroughly mixed leaves no trace of its past incarnations. Although the rock record has yet to yield clear, direct evidence from which to constrain the magnitude of Hadean continental crust, optimal solutions to modelling mantle isotopic data are at least as consistent with constant volume continental crust since ca. 4.4 Ga as with slow monotonic growth. Radiogenic isotopic data used to argue for an early mafic crust are contradicted by stable isotopic results that appear to support a continuously felsic continental crust of unknown volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Herein, any reference to crust without a modifier is of the continental variety.

References

  • Alessio, K. L., Hand, M., Kelsey, D. E., Williams, M. A., Morrissey, L. J., & Barovich, K. (2018). Conservation of deep crustal heat production. Geology, 46, 335–338.

    Article  Google Scholar 

  • Allègre, C. J., & Rousseau, D. (1984). The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth and Planetary Science Letters, 67, 19–34.

    Article  Google Scholar 

  • Armstrong, R. L. (1968). A model for the evolution of strontium and lead isotopes in a dynamic Earth. Reviews of Geophysics, 6, 175–199.

    Article  Google Scholar 

  • Armstrong, R. L. (1981). Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Philosophical Transactions of the Royal Society London Series, A, 301, 443–471.

    Google Scholar 

  • Armstrong, R. L. (1991). The persistent myth of crustal growth. Australian Journal of Earth Science, 38, 613–630.

    Article  Google Scholar 

  • Asahara, Y., & Ohtani, E. (2001). Melting relations of the hydrous primitive mantle in the CMAS-H2O system at high pressures and temperatures, and implications for generation of komatiites. Physics of the Earth and Planetary Interiors, 125, 31–44.

    Article  Google Scholar 

  • Badro, J., Côté, A. S., & Brodholt, J. P. (2014). A seismologically consistent compositional model of Earth’s core. Proceedings of the National Academy of Sciences, 111, 7542–7545.

    Article  Google Scholar 

  • Bea, F., & Montero, P. (1999). Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite formation of Ivrea-Verbano, NW Italy. Geochimica et Cosmochimica Acta, 63, 1133–1153.

    Article  Google Scholar 

  • Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O’Reilly, S. Y., & Pearson, N. J. (2010). The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119, 457–466.

    Article  Google Scholar 

  • Blichert-Toft, J., & Arndt, N. T. (1999). Hf isotope compositions of komatiites. Earth and Planetary Science Letters, 171, 439–451.

    Article  Google Scholar 

  • Blichert-Toft, J., Arndt, N. T., & Gruau, G. (2004). Hf isotopic measurements on Barberton komatiites: effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. Chemical Geology, 207, 261–275.

    Article  Google Scholar 

  • Bowring, S. A., & Housh, T. (1995). The Earth’s early evolution. Science, 269, 1535–1540.

    Article  Google Scholar 

  • Bowring, S. A., & Williams, I. S. (1999). Priscoan (4.00–4.02 Ga) Orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology, 134, 3–16.

    Article  Google Scholar 

  • Brown, G. C. (1979). The changing pattern of batholith emplacement during Earth history. In M. P. Atherton & J. Tarney (Eds.), Origin of Granite Batholiths, geochemical evidence. Nantwich: Shiva.

    Google Scholar 

  • Brown, G. M., Holland, J. G., Sigurdsson, H., Tomblin, J. F., & Arculus, R. J. (1977). Geochemistry of the Lesser Antilles volcanic island arc. Geochimica et Cosmochimica Acta, 41, 785–801.

    Article  Google Scholar 

  • Campbell, I. J. (2003). Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. American Journal of Science, 303, 319–351.

    Article  Google Scholar 

  • Carley, T. L., Miller, C. F., Wooden, J. L., Padilla, A. J., Schmitt, A. K., Economos, R. C., et al. (2014). Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record. Earth and Planetary Science Letters, 405, 85–97.

    Article  Google Scholar 

  • Caro, G., Morino, P., Mojzsis, S. J., Cates, N. L., & Bleeker, W. (2017). Sluggish Hadean geodynamics: Evidence from coupled 146,147Sm–142,143Nd systematics in Eoarchean supracrustal rocks of the Inukjuak domain (Québec). Earth and Planetary Science Letters, 457, 23–37.

    Article  Google Scholar 

  • Cogley, J. G. (1984). Continental margins and the extent and number of the continents. Reviews of Geophysics, 22, 101–122.

    Article  Google Scholar 

  • Collerson, K. D., & Kamber, B. (1999). Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science, 283, 1519–1522.

    Article  Google Scholar 

  • Compston, W., & Pidgeon, R. T. (1986). Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321, 766–769.

    Article  Google Scholar 

  • Condie, K. C. (1982). Plate tectonics and crustal evolution. New York, NY: Pergamon.

    Google Scholar 

  • Condie, K. C. (1998). Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters, 163, 97–108.

    Article  Google Scholar 

  • Condie, K. C. (2000). Episodic continental growth models: Afterthoughts and extensions. Tectonophysics, 322, 153–162.

    Article  Google Scholar 

  • Condie, K. C. (2003). Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time., G3(4), 1005. https://doi.org/10.1029/2002GC000333.

    Article  Google Scholar 

  • Condie, K. C. (2005). Earth as an evolving planetary system. Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Condie, K. C., & Aster, R. C. (2010). Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research, 180, 227–236.

    Article  Google Scholar 

  • Condie, K. C., Belousova, E., Griffin, W. L., & Sircombe, K. N. (2009). Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research, 15, 228–242.

    Article  Google Scholar 

  • Condie, K. C., & Kröner, A. (2008). When did plate tectonics begin? Evidence from the geologic record. Geological Society of America Special Paper, 440, 281–294.

    Google Scholar 

  • Condie, K. C., & Pease, V. (2008). When did plate tectonics begin on planet Earth? Geological Society of America Special Paper, 440, 294.

    Google Scholar 

  • Davies, G. F. (2002). Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochimica et Cosmochimica Acta, 66, 3125–3142.

    Article  Google Scholar 

  • Debaille, V., O’Neill, C., Brandon, A. D., Haenecour, P., Yin, Q., Mattielli, N., et al. (2013). Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth and Planetary Science Letters, 373, 83–92.

    Article  Google Scholar 

  • Deng, Z., Chaussidon, M., Savage, P., Robert, F., Pik, R., & Moynier, F. (2019). Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks. Proceedings of the National Academy of Sciences, 116, 1132–1135.

    Google Scholar 

  • DePaolo, D. J. (1980). Crustal growth and mantle evolution: Inferences from models of element transport and Nd and Sr isotopes. Geochimica et Cosmochimica Acta, 44, 1185–1196.

    Article  Google Scholar 

  • DePaolo, D. J. (1981). Nd isotopic studies: Some new perspectives on Earth structure and evolution. EOS, Transactions American Geophysical Union, 62, 137.

    Article  Google Scholar 

  • DePaolo, D. J. (1983). The mean life of continents: estimates of continent recycling rates from Nd and Hf isotopic data and implications for mantle structure. Geophysical Reseach Letters, 10, 705–708.

    Article  Google Scholar 

  • Dewey, J. F., & Windley, B. F. (1981). Growth and differentiation of the continental crust. Philosophical Transactions of the Royal Society London Series A 301, 189–206.

    Google Scholar 

  • Dhuime, B., Hawkesworth, C. J., Cawood, P. A., & Storey, C. D. (2012). A change in the geodynamics of continental growth 3 billion years ago. Science, 335, 1334–1336.

    Article  Google Scholar 

  • Dhuime, B., Wuestefeld, A., & Hawkesworth, C. J. (2015). Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8, 552–555.

    Article  Google Scholar 

  • Ducea, M., & Saleeby, J. (1998). A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. International Geology Review, 40, 78–93.

    Article  Google Scholar 

  • Eriksson, P. G. (1999). Sea level changes and the continental freeboard concept: general principles and application to the Precambrian. Precambrian Research, 97, 143–154.

    Article  Google Scholar 

  • Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., & Compston, W. (1983). Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature, 304, 616–618.

    Article  Google Scholar 

  • Fyfe, W. S. (1978). The evolution of the Earth’s crust: Modern plate tectonics to ancient hot spot tectonics? Chemical Geology, 23, 89–114.

    Article  Google Scholar 

  • Galer, S. J. G., & Goldstein, S. L. (1991). Early mantle differentiation and its thermal consequences. Geochimica et Cosmochimica Acta, 55, 227–239.

    Article  Google Scholar 

  • Ghiorso, M. S., & Sack, R. O. (1995). Chemical mass-transfer in magmatic processes 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.

    Article  Google Scholar 

  • Goodwin, A. M. (1991). Precambrian geology: The dynamic evolution of the continental crust. Academic Press.

    Google Scholar 

  • Greber, N. D., Dauphas, N., Bekker, A., Ptáček, M. P., Bindeman, I. N., & Hofmann, A. (2017). Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science, 357, 1271–1274.

    Article  Google Scholar 

  • Grieve, R. A. F. (1991). The Sudbury structure: Controversial or misunderstood? Journal of Geophysical Research, 96, 22753–22764.

    Article  Google Scholar 

  • Hacker, B. R., Kelemen, P. B., & Behn, M. D. (2011). Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307, 501–516.

    Article  Google Scholar 

  • Harrison, T. M. (2009). The Hadean crust: Evidence from >4 Ga zircons. Annual Reviews of Earth and Planetary Sciences, 37, 479–505.

    Article  Google Scholar 

  • Harrison, T. M., Bell, E. A., & Boehnke, P. (2017). Hadean zircon petrochronology. Reviews in Mineralogy and Geochemistry, 83, 329–363.

    Article  Google Scholar 

  • Harrison, T. M., Watson, E. B., & Rapp, R. P. (1986). Does anatexis deplete the lower crust in heat-producing elements? Implications from experimental studies. EOS, 67, 386.

    Article  Google Scholar 

  • Hawkesworth, C. J., & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226, 144–162.

    Article  Google Scholar 

  • Hofmann, A. W., Jochum, K. P., Seufert, M., & White, W. M. (1986). Nd and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79, 33–45.

    Article  Google Scholar 

  • Hurley, P. M., & Rand, J. R. (1969). Pre-drift continental nuclei. Science, 164, 1229–1242.

    Article  Google Scholar 

  • Iizuka, T., Komiya, T., Rino, S., Maruyama, S., & Hirata, T. (2010). Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica et Cosmochimica Acta, 74, 2450–2472.

    Article  Google Scholar 

  • Jacobsen, S. B. (1988). Isotopic and chemical constraints on mantle-crust evolution. Geochimica et Cosmochimica Acta, 52, 1341–1350.

    Article  Google Scholar 

  • Jones, C. H., Reeg, H., Zandt, G., Gilbert, H., Owens, T. J., & Stachnik, J. (2014). P-wave tomography of potential convective downwellings and their source regions, Sierra Nevada, California. Geosphere, 10, 505–533.

    Article  Google Scholar 

  • Keller, B., & Schoene, B. (2018). Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth and Planetary Science Letters, 481, 290–304.

    Google Scholar 

  • Keller, B., & Harrison, T. M. (2020). Constraining crustal silica on ancient earth. EarthArXiv. https://doi.org/10.31223/osf.io/75evw.

  • Keller, C. B., Boehnke, P., & Schoene, B. (2017). Temporal variation in relative zircon abundance throughout Earth history. Geochemical Perspectives Letters, 3, 179–189.

    Article  Google Scholar 

  • Kemp, A. I. S., & Hawkesworth, C. J. (2012). Growth and differentiation of the continental crust from isotope studies of accessory minerals. Treatise on Geochemistry.

    Google Scholar 

  • Korenaga, J. (2018a). Estimating the formation age distribution of continental crust by unmixing zircon ages. Earth and Planetary Science Letters, 482, 388–395.

    Article  Google Scholar 

  • Korenaga, J. (2018b). Crustal evolution and mantle dynamics through Earth history. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170408.

    Article  Google Scholar 

  • Lachenbruch, A. H. (1970). Crustal temperature and heat production: Implications of the linear heat-flow relation. Journal of Geophysical Research, 75, 3291–3300.

    Article  Google Scholar 

  • Latypov, R., Chistyakova, S., Grieve, R., & Huhma, H. (2019). Evidence for igneous differentiation in Sudbury Igneous Complex and impact-driven evolution of terrestrial planet proto-crusts. Nature Communications, 10. https://doi.org/10.1038/s41467-019-08467-9.

  • Lee, C. T. A., & Anderson, D. L. (2015). Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60, 1141–1156.

    Article  Google Scholar 

  • Lenardic, A., Moresi, L. N., Jellinek, A. M., & Manga, M. (2005). Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth and Planetary Science Letters, 234, 317–333.

    Article  Google Scholar 

  • Lewry, J. F., Hajnal, Z., Green, A., Lucas, S. B., White, D., Stauffer, M. R., et al. (1994). Structure of a Paleoproterozoic continent-continent collision zone: A LITHOPROBE seismic reflection profile across the Trans-Hudson Orogen, Canada. Tectonophysics, 232, 143–160.

    Article  Google Scholar 

  • Martin, E., & Sigmarsson, O. (2005). Trondhjemitic and granitic melts formed by fractional crystallization of an olivine tholeiite from Reykjanes Peninsula, Iceland. Geological Magazine, 142, 651–658.

    Article  Google Scholar 

  • McCulloch, M. T., & Bennett, V. C. (1993). Progressive growth of the Earth’s continental crust and depleted mantle: constraints from 143Nd-142Nd isotopic systematics. Lithos, 30, 237–255.

    Article  Google Scholar 

  • McLennan, S. M., & Taylor, S. R. (1982). Geochemical constraints on the growth of continental crust. Jour. Geol., 9, 342–354.

    Google Scholar 

  • McLennan, S. M., & Taylor, S. R. (1991). Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Jour. Geol., 99, 1–21.

    Article  Google Scholar 

  • Moorbath, S. (1975). Evolution of Precambrian crust from strontium isotopic evidence. Nature, 254, 395–398.

    Article  Google Scholar 

  • Moorbath, S. (1976). Age and isotope constraints for the evolution of Archean crust the Earth. In B. F. Windley (Ed.), The early history of the earth (pp. 351–364). Wiley: London.

    Google Scholar 

  • Moorbath, S. (1983). Precambrian geology: The most ancient rocks? Nature, 304, 585–586.

    Article  Google Scholar 

  • Morgan, P. (1985). Crustal radiogenic heat production and the selective survival of ancient continental crust. Proc. Lunar Planet. Scientific Conference on Journal Geophysics and Research Suppl. 90, C561–570.

    Google Scholar 

  • Morgan, P. (1989) Thermal factors controlling crustal stabilization. 28th International geological congress Washington, DC. Abstract, 3, 333.

    Google Scholar 

  • Morgan, P., Sawka, W. N., & Furlong, K. P. (1987). Introduction: Background and implications of the linear heat flow-heat production relationship. Geophysical Research Letters, 14, 248–251.

    Article  Google Scholar 

  • Morse, S. A. (1986). Origin of earliest planetary crust: Role of compositional convection. Earth and Planetary Science Letters, 81, 118–126.

    Article  Google Scholar 

  • Nelson, B. K., & DePaolo, D. J. (1985). Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basament of the North American mid-continent. Geological Society of America Bulletin, 96, 746–754.

    Article  Google Scholar 

  • Patchett, P. J., & Arndt, N. T. (1986). Nd isotopes and tectonics of 1.9–1.7 Ga crustal genesis. Earth and Planetary Science Letters, 78, 329–338.

    Article  Google Scholar 

  • Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S., & Hofmann, A. (1984). Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth and Planetary Science Letters, 69, 365–378.

    Article  Google Scholar 

  • Pearson, D. G. (1999). The age of continental roots. Lithos, 48, 171–194.

    Article  Google Scholar 

  • Ptáček, M.P., Dauphas, N., & Greber, N.D. (2020). Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions. Earth and Planetary Science Letters, 539, 116090.

    Google Scholar 

  • Rapp, R. P., & Watson, E. B. (1986). Monazite solubility and dissolution kinetics: Implications for the thorium and light rare earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology, 94, 304–316.

    Article  Google Scholar 

  • Reymer, A., & Schubert, G. (1984). Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 3, 63–77.

    Article  Google Scholar 

  • Rino, S., Komiya, T., Windley, B. F., Katayama, I., Motoki, A., & Hirata, T. (2004). Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors, 146, 369–394.

    Article  Google Scholar 

  • Roberts, N. M. W., & Spencer, C. J. (2015). The zircon archive of continent formation through time. In N. M. W. Roberts et al. (Eds.), Continent formation through time (Vol. 389, pp. 197–225). Geological Society of London Special Publications.

    Google Scholar 

  • Rosas, J. C., & Korenaga, J. (2018). Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. Earth and Planetary Science Letters, 494, 42–49.

    Article  Google Scholar 

  • Roy, R. F., Blackwell, D. D., & Birch, F. (1968). Heat generation of plutonic rocks and continental heat flow provinces. Earth and Planetary Science Letters, 5, 1–12.

    Article  Google Scholar 

  • Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309.

    Article  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64.

    Google Scholar 

  • Rudnick, R. L., McLennan, S. M., & Taylor, S. R. (1985). Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochimica et Cosmochimica Acta, 49, 1645–1655.

    Article  Google Scholar 

  • Sandiford, M. (2010). Why are the continents just so…? Journal of Metamorphic Geology, 28, 569–577.

    Article  Google Scholar 

  • Scholl, D. W., & von Huene, R. (2007). Crustal recycling at modern subduction zones applied to the past - issues of growth and preservation of continental basement, mantle geochemistry and supercontinent reconstruction. Geological Society of America Special Paper, 200, 9–32.

    Article  Google Scholar 

  • Schubert, G., & Reymer, A. P. S. (1985). Continental freeboard throughout geologic time. Nature, 316, 336–339.

    Article  Google Scholar 

  • Servali, A., & Korenaga, J. (2018). Oceanic origin of continental mantle lithosphere. Geology, 46, 1047–1050.

    Article  Google Scholar 

  • Shaw, D. M. (1976). Development of the early continental crust. In B. F. Windley (Ed.), The early history of the Earth (pp. 33–46). London: Wiley.

    Google Scholar 

  • Smit, M. A., & Mezger, K. (2017). Earth’s early O2 cycle suppressed by primitive continents. Nature Geoscience, 10, 788–781.

    Google Scholar 

  • Smith, J. V. (1981). The first 800 million years of earths history. Philosophical Transactions of the Royal Society London Series A, 301, 401–422.

    Google Scholar 

  • Stern, R. J. (2007). When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Science Bulletin, 52, 578–591.

    Article  Google Scholar 

  • Stern, R. J., & Scholl, D. W. (2010). Yin and yang of continental crust creation and destruction by plate tectonic processes. International Geology Review, 52, 1–31.

    Article  Google Scholar 

  • Sylvester, P. J., Campbell, I. H., & Bowyer, D. A. (1997). Niobium/uranium evidence for early formation of the continental crust. Science, 275, 521–523.

    Article  Google Scholar 

  • Tang, M., Chen, K., & Rudnick, R. L. (2016). Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351, 372–375.

    Article  Google Scholar 

  • Taylor, S. R. (1967). The origin and growth of continents. Tectonophysics, 4, 17–34.

    Article  Google Scholar 

  • Taylor, S. R. (1982). Planetary science: A lunar perspective. Houston, TX: Lunar Planet. Inst.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The Continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Taylor, S. R., & White, A. J. R. (1965). Geochemistry of andesites and the growth of continents. Nature, 208, 271–273.

    Article  Google Scholar 

  • Tera, F., Brown, L., Morris, J., Sacks, I. S., Klein, J., & Middleton, R. (1986). Sediment incorporation in island-arc magmas: inferences from 10Be. Geochimica et Cosmochimica Acta, 50, 535–550.

    Article  Google Scholar 

  • Valley, J. W., Peck, W. H., King, E. M., & Wilde, S. A. (2002). A cool early Earth. Geology, 30, 351–354.

    Article  Google Scholar 

  • Vannucchi, P., Morgan, J. P., & Balestrieri, M. L. (2016). Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications. Gondwana Research, 40, 184–198.

    Article  Google Scholar 

  • Vannucchi, P., Ranero, C. R., Galeotti, S., Straub, S. M., Scholl, D. W., & McDougall-Ried, K. (2003). Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones. Journal Geophysical Research, 108, 2511.

    Article  Google Scholar 

  • Veizer, J., & Jansen, S. L. (1979). Basement and sedimentary recycling and continental evolution. Journal of Geology, 87, 341–370.

    Article  Google Scholar 

  • Vervoort, J. D., & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63, 533–556.

    Article  Google Scholar 

  • Warren, P. H. (1989). Growth of the continental crust: A planetary-mantle perspective. Tectonophysics, 161, 165–199.

    Article  Google Scholar 

  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.

    Article  Google Scholar 

  • Watson, E. B., & Harrison, T. M. (1984). Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Physics of the Earth and Planetary Interiors, 35, 19–30.

    Article  Google Scholar 

  • Zou, H., & Harrison, T. M. (2007). Formation of 4.5 Ga continental crust. Geochimica et Cosmochimica Acta Suppl. 71, A1176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Models of Continental Growth and Destruction. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_5

Download citation

Publish with us

Policies and ethics