Skip to main content

The Lunar Surface and Late Heavy Bombardment Concept

  • Chapter
  • First Online:
Hadean Earth
  • 1215 Accesses

Abstract

As much as half of lunar surface rocks may have originated between 4.4 and 3.9 billion years and thus observations of, and samples from, Moon could attest to conditions then extant in the inner solar system. The concept of a lunar cataclysm at ~3.9 Ga grew from seemingly contradictory observations of elemental fractionation in lunar highland rocks. U–Pb—and some Rb–Sr—data suggested recrystallization occurred between about 4.0 and 3.8 Ga. The Late Heavy Bombardment (LHB) concept that emerged appeared supported by ~3.9 Ga 40Ar/39Ar “plateau ages” of lunar impact melt rocks, although no similar spike in ages was seen in the likely more globally distributed lunar meteorites. While the 40Ar/39Ar step-heating method can reveal intragrain isotope variations, this capability has several method-specific requirements that, if not met, preclude thermochronologic interpretations. Three such issues effectively rule out the use of virtually all lunar 40Ar/39Ar data as support for the LHB hypothesis: (1) the “plateau age” approach used is an aphysical concept for the thermally disturbed samples typical of most lunar impact melt rocks, (2) laboratory artifacts destroy preserved diffusion information, or create false apparent age gradients; and (3) obtaining meaningful thermal history information from extraterrestrial samples that have differing activation energies for Ar diffusion in their K-bearing phases requires a different laboratory protocol than was used on lunar rocks. Possibly due to these issues, no case in which multiple chronometric techniques have yielded intrasample concordancy of a lunar melt rock has yet been documented. Advancements in mass spectrometry now permit 40Ar/39Ar and U–Pb dating to be undertaken on small (10 s-of-μm diameter) in situ spots on glasses and accessory minerals in lunar rocks. This approach has the potential to transcend the analytical challenge posed by the continuous impact reworking of the lunar regolith that produces fine-scale polygenetic breccias of multiple age and origins. The longstanding assumption that lunar melt rocks originated from discrete, basin-forming events is obviated by lunar imaging that show impact melts formed in small highland craters and clusters of ‘light plains’ deposits radiating outward  >2000 km from large impact basins. The latter underscores how poorly the spatial relationships between large basins and their surrounding deposits were understood when impact chronologies were developed in the 1970s. The assumption that a specific lunar melt rock from a given landing site is representative of one of the basin-forming impacts is deeply flawed. Establishing a reliable, quantitative planetary impact chronology requires that all analyzed rocks be equally suitable for the application of specific chronometers. This may not be possible given the large contrasts in incompatible trace element distributions across the lunar surface (e.g., Procellarum KREEP terrane, South Pole Aiken basin). A conservative view of the lunar chronological record is that the large nearside basins are older than 3.82 Ga but these data are consistent with most of them being older than 3.92 Ga and possibly older than 4.35 Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A play on the Latin translation of Aristotle’s hypothesized fifth element (quinta essentia) that forms the celestial realms.

References

  • Abramov, O., & Mojzsis, S. J. (2009). Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature, 459, 419–422.

    Article  Google Scholar 

  • Albarède, F. (1978). The recovery of spatial isotope distributions from stepwise degassing data. Earth and Planetary Science Letters, 39, 387–397.

    Article  Google Scholar 

  • Anand, M., Barnes, J. J., & Hallis, L. J. (2015). Lunar geology. In M. R. Lee & H Leroux (Eds.), Planetary mineralogy (Vol. 15, pp. 129–164). European Mineralogical Union Notes in Mineralogy.

    Google Scholar 

  • Armstrong, J. C., Wells, L. E., & Gonzalez, G. (2002). Rummaging through Earth’s attic for remains of ancient life. Icarus, 160, 183–196.

    Article  Google Scholar 

  • Baldwin, R. B. (1974). Was there a “terminal lunar cataclysm” 3.9–4.0 x 109 years ago? Icarus, 23, 157–166.

    Article  Google Scholar 

  • Barboni, M., Boehnke, P., Keller, B., Kohl, I.E., Schoene, B., Young, E.D., & McKeegan, K.D. (2017). Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.

    Google Scholar 

  • Bellucci, J. J., Nemchin, A. A., Grange, M. L., Robinson, K. L., Collins, G., Whitehouse, M. J., et al. (2019). Earth and Planetary Science Letters, 510, 173–185.

    Google Scholar 

  • Benz, W., Slattery, W. L., & Cameron, A. G. W. (1986). The origin of the Moon and the single-impact hypothesis I. Icarus, 66, 515–535.

    Article  Google Scholar 

  • Binder, A. B., & Roberts, D. L. (1970). Criteria for lunar site selection. IIT Research Institute, Report P-30, 38 pp.

    Google Scholar 

  • Bleeker, W. (2004a). Taking the pulse of planet Earth: A proposal for a new multi-disciplinary flagship project in Canadian solid Earth sciences. Geoscience Canada, 31, 179–190.

    Google Scholar 

  • Bleeker, W. (2004b). Towards a ‘natural’ time scale for the Precambrian—A proposal. Lethaia, 37, 219–222.

    Article  Google Scholar 

  • Boehnke, P. (2016). A Tale of Two Earths: Reconciling the Lunar and Terrestrial Hadean Records (Ph.D. thesis). University of California, Los Angeles.

    Google Scholar 

  • Boehnke, P., & Harrison, T. M. (2016). Illusory late heavy bombardments. Proceedings of the National Academy of Sciences, 113, 10802–10806.

    Article  Google Scholar 

  • Boehnke, P., Harrison, T. M., Heizler, M. T., & Warren, P. H. (2016). A model for meteoritic and lunar 40Ar/39 Ar age spectra: Addressing the conundrum of multi-activation energies. Earth and Planetary Science Letters, 453, 267–275.

    Article  Google Scholar 

  • Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., & Schmitt, A. K. (2013). Zircon saturation re-revisited. Chemical Geology, 351, 324–334.

    Article  Google Scholar 

  • Bogard, D. D. (1995). Impact ages of meteorites: A synthesis. Meteoritics, 30, 244–268.

    Article  Google Scholar 

  • Bogard, D. D. (2011). K-Ar ages of meteorites: clues to parent-body thermal histories. Chemie der Erde-Geochemistry, 71, 207–226.

    Article  Google Scholar 

  • Bogard, D. D., & Garrison, D. H. (2003). 39Ar-40Ar ages of eucrites and thermal history of asteroid 4 Vesta. Meteoritics & Planetary Science, 38, 669–710.

    Google Scholar 

  • Bogard, D. D., Nyquist, L. E., & Johnson, P. (1984). Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites. Geochimica et Cosmochimica Acta, 48, 1723–1739.

    Article  Google Scholar 

  • Bottke, W. F., & Norman, M. D. (2017). The late heavy bombardment. Annual Review of Earth and Planetary Sciences, 45, 619–647.

    Article  Google Scholar 

  • Brasser, R., Mojzsis, S. J., Werner, S. C., Matsumura, S., & Ida, S. (2016). Late veneer and late accretion to the terrestrial planets. Earth and Planetary Science Letters, 455, 85–93.

    Article  Google Scholar 

  • Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K., & Levison, H. F. (2009). Constructing the secular architecture of the solar system II: The terrestrial planets. Astronomy & Astrophysics, 507, 1053–1065.

    Article  Google Scholar 

  • Cameron, A. G., & Ward, W. R. (1976). The origin of the Moon. Lunar and Planetary Science Conference, 7, 120.

    Google Scholar 

  • Canup, R. M. (2004). Simulations of a late lunar forming Impact. Icarus, 168, 433–456.

    Article  Google Scholar 

  • Canup, R. M. (2014). Lunar-forming impacts: processes and alternatives. Philosophical Transactions of the Royal Society A, 372, 20130175.

    Article  Google Scholar 

  • Canup, R. M., & Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708.

    Article  Google Scholar 

  • Cassata, W. S., Renne, P. R., & Shuster, D. L. (2009). Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta, 73, 6600–6612.

    Article  Google Scholar 

  • Cassata, W. S., Renne, P. R., & Shuster, D. L. (2011). Argon diffusion in pyroxenes: Implications for thermochronometry and mantle degassing. Earth and Planetary Science Letters, 304, 407–416.

    Article  Google Scholar 

  • Chambers, J. (2004). Planetary accretion in the inner Solar System. Earth Planet Science Letters, 223, 241–252.

    Article  Google Scholar 

  • Chao, E. C. T. (1973). Geologic implications of the Apollo 14 Fra Mauro breccias and comparison with ejecta from the Ries crater, Germany. U.S. Geological Survey Journal Research, 1–18.

    Google Scholar 

  • Chapman, C. R., Cohen, B. A., & Grinspoon, D. H. (2007). What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus, 189, 233–245.

    Article  Google Scholar 

  • Cherniak, D. J., Lanford, W. A., & Ryerson, F. J. (1991). Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta, 5, 1663–1673.

    Article  Google Scholar 

  • Clement, M. S., Kaib, N. A., Raymond, S. N., & Walsh, K. J. (2018). Mars’ growth stunted by an early giant planet instability. Icarus, 311, 340–356.

    Article  Google Scholar 

  • Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E., & Walsh, K. J. (2019). The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 321, 778–790.

    Google Scholar 

  • Cloud, P. (1972). A working model of the primitive Earth. American Journal of Science, 272, 537–548.

    Article  Google Scholar 

  • Cohen, B. A., Swindle, T. D., & Kring, D. A. (2000). Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science, 290, 1754–1756.

    Article  Google Scholar 

  • Cohen, B. A., Swindle, T. D., & Kring, D. A. (2005). Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteoritics & Planetary Science, 40, 755–777.

    Google Scholar 

  • Collin, G. S., Melosh, H. J., & Osinski, G. R. (2012). The impact cratering process. Elements, 8, 25–30.

    Article  Google Scholar 

  • Collins, G. (2002). Hydrocode simulations of Chicxulub Crater collapse and peak-ring formation. Icarus, 157, 24–33.

    Article  Google Scholar 

  • Ćuk, M., & Stewart, S. T. (2012). Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science, 338, 1047–1052.

    Article  Google Scholar 

  • Culler, T. S., Becker, T. A., Muller, R. A., & Renne, P. R. (2000). Lunar impact history from 40Ar/39Ar dating of glass spherules. Science, 287, 1785–1788.

    Article  Google Scholar 

  • Dalrymple, G. B., & Lanphere, M. A. (1974). 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochimica et Cosmochimica Acta, 38, 715–738.

    Article  Google Scholar 

  • Dalrymple, G. B., & Ryder, G. (1993). 40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. Journal of Geophysical Research: Planets, 98, 13085–13095.

    Google Scholar 

  • Dalrymple, G. B., & Ryder, G. (1996). Argon‐40/argon‐39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. Journal Geophysics Research: Planets 101, 26069–26084.

    Google Scholar 

  • Darwin, G. H. (1879). On the bodily tides of viscous and semi-elastic spheroids, and on the ocean tides upon a yielding nucleus. Philosophical Transactions of the Royal Society London, Pt., 1, 1–35.

    Google Scholar 

  • Dauphas, N. (2017). The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521–524.

    Article  Google Scholar 

  • Dauphas, N., Burkhardt, C., Warren, P. H., & Fang-Zhen, T. (2014). Geochemical arguments for an Earth-like Moon-forming impactor. Philosophical Transactions of the Royal Society, 372, 20130244.

    Article  Google Scholar 

  • Day, J. M. D., & Walker, R. J. (2015). Highly siderophile element depletion in the Moon. Earth and Planetary Science Letters, 423, 114–124.

    Article  Google Scholar 

  • de Sousa Ribeiro, R., Morbidelli, A., Raymond, S. N., Izidoro, A., Gomes, R., & Neto, E. V. (2020). Dynamical evidence for an early giant planet instability. Icarus, 339, 113605.

    Article  Google Scholar 

  • Deienno, R., Morbidelli, A., Gomes, R. S., & Nesvorný, D. (2017). Constraining the giant planets’ initial configuration from their evolution: Implications for the timing of the planetary instability. The Astronomical Journal, 153, 153.

    Article  Google Scholar 

  • Dominik, B., & Jessberger, E. K. (1978). Early lunar differentiation: 4.42–AE–old plagioclase clasts in Apollo 16 breccia 67435. Earth and Planetary Science Letters, 38, 407–415.

    Article  Google Scholar 

  • Fassett, C. I., & Minton, D. A. (2013). Impact bombardment of the terrestrial planets and the early history of the Solar System. Nature Geoscience, 6, 520–524.

    Article  Google Scholar 

  • Fleck, R. J., Sutter, J. F., & Elliot, D. H. (1977). Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta, 41, 15–32.

    Google Scholar 

  • Gapcynski, J. P., Blackshear, W. T., Tolson, R. H., & Compton, H. R. (1975). A determination of the lunar moment of inertia. Geophysical Reseach Letters, 2, 353–356.

    Article  Google Scholar 

  • Gardés, E., & Montel, J. M. (2009). Opening and resetting temperatures in heating geochronological systems. Contributions to Mineralogy and Petrology, 158, 185–195.

    Article  Google Scholar 

  • Genda, H., Brasser, R., & Mojzsis, S. J. (2017). The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth and Planetary Science Letters, 480, 25–32.

    Article  Google Scholar 

  • Gillis, J. J., Jolliff, B. L., & Korotev, R. L. (2004). Lunar surface geochemistry: Global concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data. Geochimica et Cosmochimica Acta, 68(3791–380), 5.

    Google Scholar 

  • Gladman, B. J., Burns, J. A., Duncan, M. J., & Levison, H. F. (1995). The dynamical evolution of lunar impact ejecta. Icarus, 118, 302–321.

    Article  Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–470.

    Article  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., & Lourens, L. J. (2004). A new geologic time scale, with special reference to Precambrian and Neogene. Episodes, 27, 83–100.

    Article  Google Scholar 

  • Grange, M. L., Nemchin, A. A., Pidgeon, R. T., Timms, N., Muhling, J. R., & Kennedy, A. K. (2009). Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochimica et Cosmochimica Acta, 73, 3093–3107.

    Article  Google Scholar 

  • Green, T. H., & Watson, E. B. (1982). Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’rock series. Contributions to Mineralogy and Petrology, 79, 96–105.

    Article  Google Scholar 

  • Grieve, R. A. F., Cintala, M. J., & Therriault, A. M. (2006). Large-scale impacts and the evolution of the Earth’s crust: The early years. Geological Society of America Special Paper, 405, 22–31.

    Google Scholar 

  • Haber, T., Scherer, E. E., Bast, R., & Sprung, P. (2017). 176Lu-176Hf isochron dating of strongly cosmic ray exposed samples—A case study on Apollo 14 impact melt rock 14310. Lunar and Planetary Science Conference, 48, 2911.

    Google Scholar 

  • Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., & Smith, D. G. (1990). A geologic time scale 1989. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harrison, T. M., Lovera, O. M., & Heizler, M. T. (1991). 40Ar/39Ar results for alkali feldspars containing diffusion domains with differing activation energy. Geochimica et Cosmochimica Acta, 55, 1435–1448.

    Article  Google Scholar 

  • Harrison, T. M., & Watson, E. B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1467–1477.

    Article  Google Scholar 

  • Hartmann, W. K. (1975). Lunar “cataclysm”: A misconception? Icarus, 24, 181–187.

    Article  Google Scholar 

  • Hartmann, W. K. (2019). History of the Terminal Cataclysm Paradigm: Epistemology of a planetary bombardment that never (?) happened. Geosciences, 9, 285.

    Article  Google Scholar 

  • Hartmann, W. K., & Davis, D. R. (1975). Satellite-sized planetesimals and lunar origin. Icarus, 24, 504–515.

    Article  Google Scholar 

  • Hartmann, W. K., & Neukum, G. (2001). Cratering chronology and the evolution of Mars. Space Science Reviews, 96, 165–194.

    Article  Google Scholar 

  • Hartmann, W. K., Ryder, G., Dones, L., & Grinspoon, D. (2000). The time-dependent intense bombardment of the primordial Earth/Moon system. In R. Canup & K. Righter (Eds.), Origin of the Earth and Moon (493–512), University of Arizona Press.

    Google Scholar 

  • Hartung, J. B. (1974). Can random impacts cause the observed 39Ar/40Ar age distribution for Lunar Highland rocks? Meteoritics, 9, 349.

    Google Scholar 

  • Head, J. W. (1974). Stratigraphy of the Descartes region (Apollo 16)—Implications for the origin of samples. Moon, 11, 77–99.

    Article  Google Scholar 

  • Holzheid, A., Sylvester, P., O’neill, H.S.C., Rubie, D. C., & Palme, H. (2000). Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature 406, 396–399.

    Google Scholar 

  • Hood, L. L., & Artemieva, N. A. (2008). Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations. Icarus, 193, 485–502.

    Article  Google Scholar 

  • Hörz, F., Grieve, R., Heiken, G., Spudis, P., & Binder, A. (1991). Lunar surface processes. In G. H. Heiken et al. (Eds.), Lunar sourcebook (61–120). Cambridge Press.

    Google Scholar 

  • Huneke, J. C. (1976). Diffusion artifacts in dating by stepwise thermal release of rare gases. Earth and Planetary Science Letters, 28, 407–417.

    Article  Google Scholar 

  • James W. Head, (1976). Lunar volcanism in space and time. Reviews of Geophysics, 14(2), 265.

    Google Scholar 

  • Jessberger, E. K., & Dominik, B. (1979). Gerontology of the Allende meteorite. Nature, 277, 554.

    Article  Google Scholar 

  • Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L., & Wieczorek, M. A. (2000). Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research: Planets, 105, 4197–4216.

    Article  Google Scholar 

  • Kimura, K., Lewis, R. S., & Anders, E. (1974). Distribution of gold and rhenium between nickel-iron and silicate melts: Implications for the abundances of siderophile elements on the Earth and Moon. Geochimica et Cosmochimica Acta, 38, 683–701.

    Article  Google Scholar 

  • Korotev, R. L. (2005). Lunar geochemistry as told by lunar meteorites. Chemie der Erde-Geochemistry, 65, 297–346.

    Article  Google Scholar 

  • Kraus, R. G., Root, S., Lemke, R. W., Stewart, S. T., Jacobsen, S. B., & Mattsson, T. R. (2015). Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geoscience, 8, 269–272.

    Article  Google Scholar 

  • Kring, D. A., & Cohen, B. A. (2002). Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. Journal of Geophysical Research: Planets 107(E2).

    Google Scholar 

  • Levison, H. F., Dones, L., Chapman, C. R., Stern, S. A., Duncan, M. J., & Zahnle, K. (2001). Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus, 151, 286–306.

    Article  Google Scholar 

  • Lineweaver, C. H., Grether, D., & Hidas, M. (2002). How common are Earths? How common are Jupiters? Bioastronomy 2002: Life Among the Stars, ASP Conference Series (Vol. 28, pp. 1–4), arXiv preprint astro-ph/0209383.

    Google Scholar 

  • Liu, D., Jolliff, B. L., Zeigler, R. A., Korotev, R. L., Wan, Y., Xie, H., et al. (2012). Comparative zircon U-Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth and Planetary Science Letters, 319, 277–286.

    Article  Google Scholar 

  • Lock, S. J., & Stewart, S. T. (2017). The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. Journal of Geophysical Research: Planets, 122, 950–982.

    Google Scholar 

  • Lovera, O. M., Richter, F. M., & Harrison, T. M. (1989). The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. Journal of Geophysical Research: Solid Earth, 94, 17917–17935.

    Article  Google Scholar 

  • Magna, T., Dauphas, N., Righter, K., & Camp, R. (2017). Stable isotope constraints on the formation of Moon. LPI Contrib. 1988.

    Google Scholar 

  • Maher, K. A., & Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.

    Article  Google Scholar 

  • Mann, A. (2018). Bashing holes in the tale of Earth’s troubled youth. Nature, 553, 393–395.

    Article  Google Scholar 

  • Marchi, S., Bottke, W. F., Elkins-Tanton, L. T., Bierhaus, M., Wuennemann, K., Morbidelli, A., et al. (2014). Widespread mixing and burial of Earth’s Hadean crust by asteroid. Nature, 511, 578–582.

    Article  Google Scholar 

  • Marchi, S., Bottke, W. F., Cohen, B. A., Wünnemann, K., Kring, D. A., McSween, H. Y., De Sanctis, M. C., O’Brien, D. P., Schenk, P., Raymond, C. A., Russell, C. T. (2013). High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6(4), 303–307.

    Google Scholar 

  • Mark, R. K., Lee-Hu, C. N., & Wetherill, G. W. (1974). Rb-Sr age of lunar igneous rocks 62295 and 14310. Geochimica et Cosmochimica Acta, 38, 1643–1648.

    Article  Google Scholar 

  • Marvin, U. B. (1983). The discovery and initial characterization of Allan Hills 81005: The first lunar meteorite. Geophysical Reseach Letters, 10, 775–778.

    Article  Google Scholar 

  • Maurer, P., Eberhardt, P., Geiss, I., Gršgler, N., Stettler, A., Brown, G. M., et al. (1978). Pre-Imbrian craters and basins: Ages, compositions and excavation depths of Apollo 16 breccias. Geochimica et Cosmochimica Acta, 42, 1687–1720.

    Article  Google Scholar 

  • McDougall, I., & Harrison, T. M. (1999). Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press.

    Google Scholar 

  • McGetchin, T. R., Settle, M., & Head, J. W. (1973). Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth and Planetary Science Letters, 20, 226–236.

    Article  Google Scholar 

  • Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford University Press (Oxford Monographs on Geology and Geophysics, No. 11) (253 pp).

    Google Scholar 

  • Mercer, C. M., & Hodges, K. V. (2017). Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias. Journal of Geophysical Research: Planets, 122, 1650–1671.

    Google Scholar 

  • Mercer, C. M., Young, K. E., Weirich, J. R., Hodges, K. V., Jolliff, B. L., Wartho, J. A., et al. (2015). Refining lunar impact chronology through high spatial resolution 40 Ar/39 Ar dating of impact melts. Science Advances, 1, e1400050.

    Article  Google Scholar 

  • Merle, R. E., Nemchin, A. A., Grange, M. L., Whitehouse, M. J., & Pidgeon, R. T. (2014). High resolution U-Pb ages of Ca-phosphates in Apollo 14 breccias: Implications for the age of the Imbrium impact. Meteoritics & Planetary Science, 49, 2241–2251.

    Article  Google Scholar 

  • Merrihue, C., & Turner, G. (1966). Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 2852–2857.

    Article  Google Scholar 

  • Meyer, C. (2009). 14310. Lunar Sample Compendium, 1–12 (https://www.lpi.usra.edu/lunar/samples/atlas/compendium/14310.pdf).

  • Meyer, H. M., Denevi, B. W., Boyd, A. K., & Robinson, M. S. (2016). The distribution and origin of lunar light plains around orientale basin. Icarus, 273, 135–145. https://doi.org/10.1016/j.icarus.2016.02.014.

  • Meyer, H. M., Denevi, B. W., Boyd, A. K., & Robinson, M. S. (2018). A new global map of light plains from the lunar reconnaissance orbiter camera. In 49th Lunar and Planetary Science Conference, Abstract #1474.

    Google Scholar 

  • Meyer, C., Williams, I. S., & Compston, W. (1996). Uranium-lead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteoritics & Planetary Science, 31, 370–387.

    Article  Google Scholar 

  • Michael, G., Basilevsky, A., Neukum, G. (2018). On the history of the early meteoritic bombardment of the moon: was there a terminal lunar cataclysm? Icarus, 302, 80–103.

    Google Scholar 

  • Moorbath, S. (2005a). Palaeobiology: Dating earliest life. Nature, 434, 155–156.

    Article  Google Scholar 

  • Moorbath, S. (2005b). Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaean transition. Applied Geochemistry, 20, 819–824.

    Article  Google Scholar 

  • Morbidelli, A., Nesvorny, D., Laurenz, V., Marchi, S., Rubie, D. C., Elkins-Tanton, L., Wieczorek, M., Jacobson, S. (2018). The timeline of the lunar bombardment: revisited. Icarus, 305, 262–276.

    Google Scholar 

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018). Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nature Astronomy, 2. https://doi.org/10.1038/s41550-018-0564-3.

  • Neukum, G., Ivanov, B. A., & Hartmann, W. K. (2001). Cratering records in the inner solar system in relation to the lunar reference system. Chronology and evolution of Mars (pp. 55–86). Dordrcht: Springer.

    Chapter  Google Scholar 

  • Norman, M. D., Duncan, R. A., & Huard, J. J. (2006). Identifying impact events within the lunar cataclysm from 40Ar–39Ar ages and compositions of Apollo 16 impact melt rocks. Geochimica et Cosmochimica Acta, 70, 6032–6049.

    Article  Google Scholar 

  • Oberbeck, V. R., Quaide, W. L., Gault, D. E., Hoerz, F., & Morrison, R. H. (1975). On the origin of the lunar smooth-plains. Moon, 12, 19–54.

    Article  Google Scholar 

  • Oberbeck, V. R., Quaide, W. L., Gault, D. E., Morrison, R. H., & Hörz, F. (1974). Smooth plains and continuous deposits of craters and basins. In 5th Proceedings of Lunar Science Conference (pp. 111–136).

    Google Scholar 

  • Ozima, M., Seki, K., Terada, N., Miura, Y. N., Podosek, F. A., & Shinagawa, H. (2005). Terrestrial nitrogen and noble gases in lunar soils. Nature, 436, 655–659.

    Article  Google Scholar 

  • Ozima, M., Yin, Q. Z., Podosek, F. A., & Miura, Y. N. (2008). Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils. Proceedings of the National Academy of Sciences, 105, 17654–17658.

    Article  Google Scholar 

  • Pietro, N. E., & Pieters, C. M. (2006). Modeling the provenance of the Apollo 16 regolith. Journal of Geophysical Research: Planets, 111(E09005), 1–13.

    Google Scholar 

  • Plescia, J. B., & Cintala, M. J. (2012). Impact melt in small lunar highland craters. Journal of Geophysical Research: Planets, 117, E12.

    Article  Google Scholar 

  • Righter, K., Humayun, M., & Danielson, L. (2008). Partitioning of palladium at high pressures and temperatures during core formation. Nature Geoscience, 1, 321–323.

    Article  Google Scholar 

  • Ryder, G., Koeberl, C., & Mojzsis, S. J. (2000). Heavy bombardment of the Earth at ~3.85 Ga: The search for petrographic and geochemical evidence. In R. Canup & K. Righter (Eds.), Origin of the Earth and Moon (pp. 475–492), University of Arizona Press.

    Google Scholar 

  • Safronov, V. S. (1954). On the growth of planets in the protoplanetary cloud. Astrron. Zh., 31, 499–510.

    Google Scholar 

  • Schaeffer, G. A., & Schaeffer, O. A. (1977). 39Ar/40Ar ages of lunar rocks. In Proceedings, Lunar and Planetary Science Conference VIII (pp. 2253–2300).

    Google Scholar 

  • Schmidt, O. Y. (1944). Meteorite theory of origin of Earth and planets. Doklady Akademii Nauk SSSR, 45, 245–249.

    Google Scholar 

  • Schultz, P. H., & Gault, D. E. (1985). Clustered impacts: Experiments and implications. Journal Geophysics Research, 90, 3701–3732.

    Article  Google Scholar 

  • Seki, K., Elphic, R. C., Hirahara, M., Terasawa, T., & Mukai, T. (2001). On atmospheric loss of oxygen ions from Earth through magnetospheric processes. Science, 291, 1939–1941.

    Article  Google Scholar 

  • Shea, E. K., Weiss, B. P., Cassata, W. S., Shuster, D. L., Tikoo, S. M., & Gattacceca, J. (2012). A long-lived lunar core dynamo. Science, 335, 453–456.

    Article  Google Scholar 

  • Shearer, C. K., Hess, P. C., Wieczorek, M. A., Pritchard, M. E., Parmentier, E. M., Borg, L. E., et al. (2006). Thermal and magmatic evolution of the Moon. Reviews in Mineralogy and Geochemistry, 60, 365–518.

    Article  Google Scholar 

  • Shuster, D. L., Balco, G., Cassata, W. S., Fernandes, V. A., Garrick-Bethell, I., & Weiss, B. P. (2010). A record of impacts preserved in the lunar regolith. Earth and Planetary Science Letters, 290, 155–165.

    Article  Google Scholar 

  • Sleep, N. H., Zahnle, K. J., Kasting, J. F., & Morowitz, H. J. (1989). Annihilation of ecosystems by large asteroid impacts on the early earth. Nature, 342, 139–142.

    Article  Google Scholar 

  • Snape, J. F., Nemchin, A. A., Grange, M. L., Bellucci, J. J., Thiessen, F., & Whitehouse, M. J. (2016). Phosphate ages in Apollo 14 breccias: Resolving multiple impact events with high precision U-Pb SIMS analyses. Geochimica et Cosmochimica Acta, 174, 13–29.

    Article  Google Scholar 

  • Spudis, P. D. (1993). The geology of multi-ring impact basins: The Moon and other planets. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Spudis, P. D., Wilhelms, D. E., & Robinson, M. S. (2011). The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. Journal of Geophysical Research: Planets, 116, E12.

    Article  Google Scholar 

  • Stettler, A., Eberhardt, P., Geiss, J., Grögler, N., & Maurer, P. (1973). Ar39-Ar40 ages and Ar37-Ar38 exposure ages of lunar rocks. Lunar and Planetary Science Conference Proceedings, 4, 1865–1888.

    Google Scholar 

  • Stevenson, D. J., & Halliday, A. N. (2014). The origin of the Moon. Philosophical Transactions of the Royal Society A, A 372. https://doi.org/10.1098/rsta.2014.0289.

  • Stöffler, D., & Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Chronology and evolution of Mars (pp. 9–54). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., & Kring, D. A. (2005). The origin of planetary impactors in the inner solar system. Science, 309, 1847–1850.

    Article  Google Scholar 

  • Swindle, T. D., Kring, D. A., & Weirich, J. R. (2014). 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. Geological Society, London, Special Publications, 378, 333–347.

    Google Scholar 

  • Tatsumoto, M., Hedge, C. E., Doe, B. R., & Unruh, D. M. (1972). U-Th-Pb and Rb-Sr measurements on some Apollo 14 lunar samples. Lunar and Planetary Science Conference Proceedings, 3, 1531–1555.

    Google Scholar 

  • Taylor, D. J., McKeegan, K. D., & Harrison, T. M. (2009). 176Lu-176Hf zircon evidence for rapid lunar differentiation. Earth and Planetary Science Letters, 279, 157–164. https://doi.org/10.1016/j.epsl.2008.12.030.

    Article  Google Scholar 

  • Taylor, S. R., Taylor, G. J., & Taylor, L. A. (2006). The moon: A Taylor perspective. Geochimica et Cosmochimica Acta, 70, 5904–5918.

    Article  Google Scholar 

  • Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. (1974). Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters, 22, 1–21.

    Article  Google Scholar 

  • Terada, K., Yokota, S., Saito, Y., Kitamura, N., Asamura, K., & Nishino, M. N. (2017). Biogenic oxygen from earth transported to the moon by a wind of magnetospheric ions. Nature Astronomy, 1, 1–5.

    Google Scholar 

  • Thiessen, F., Nemchin, A. A., Snape, J. F., Whitehouse, M. J., & Bellucci, J. J. (2017). Impact history of the Apollo 17 landing site revealed by U-Pb SIMS ages. Meteoritics & Planetary Science, 52, 584–611.

    Article  Google Scholar 

  • Tikoo, S. M., Weiss, B. P., Shuster, D. L., Suavet, C., Wang, H., & Grove, T. L. (2017). A two-billion-year history for the lunar dynamo. Science Advances, 3, e1700207.

    Article  Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459–461.

    Article  Google Scholar 

  • Turner, G. (1970). Argon–40/argon–39 dating of lunar rock samples. Science, 167, 466–468.

    Article  Google Scholar 

  • Turner, G. (1977). Potassium–argon chronology of the moon. Physics and Chemistry of the Earth, 10, 145–195.

    Google Scholar 

  • Turner, G., & Cadogan, P. H. (1974). Possible effects of 39Ar recoil in 40Ar–39Ar dating. Geochimica et Cosmochimica Acta Suppl. 5 (Proceedings of the Fifth Lunar Science Conference, pp. 1601–1615).

    Google Scholar 

  • Turner, G., & Cadogan, P. H. (1975). The history of lunar bombardment inferred from Ar-40-Ar-39 dating of highland rocks. In Lunar and Planetary Science Conference Proceedings (Vol. 6, pp. 1509–1538). New York, NY: Pergamon.

    Google Scholar 

  • Turner, G., Miller, J. A., & Grasty, R. L. (1966). The thermal history of the Bruderheim meteorite. Earth and Planetary Science Letters, 1, 155–157.

    Article  Google Scholar 

  • Urey, H. C. (1952a). The planets: Their origin and development (p. 245). New Haven: Yale University Press.

    Google Scholar 

  • Urey, H. C. (1952b). The origin of the Earth. Scientific American, 187(October), 53–61.

    Article  Google Scholar 

  • Van Kranendonk, M. J., Altermann, W., Beard, B. L., Hoffman, P. F., Johnson, C. M., Kasting, J. F., et al. (2012) A chronostratigraphic division of the Precambrian: possibilities and challenges. In F. M. Gradstein, et al. (Eds.), The geologic time scale (pp. 299–392). Elsevier.

    Google Scholar 

  • Villa, I. M., Huneke, J. C., & Wasserburg, G. J. (1983). 39Ar recoil losses and presolar ages in Allende inclusions. Earth and Planetary Science Letters, 63, 1–12.

    Article  Google Scholar 

  • Warren, P. H. (1985). The magma ocean concept and lunar evolution. Annual Review of Earth and Planetary Sciences, 13, 201–240.

    Article  Google Scholar 

  • Warren, P. H. (2004). The Moon. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on geochemistry (pp. 559–599), Elsevier, Amsterdam.

    Google Scholar 

  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.

    Article  Google Scholar 

  • Weber, R. C., Lin, P. Y., Garnero, E. J., Williams, Q., & Lognonne, P. (2011). Seismic detection of the lunar core. Science, 331, 309–312.

    Article  Google Scholar 

  • Weiss, B. P., & Tikoo, S. M. (2014). The lunar dynamo. Science, 346(6214), 1246753.

    Google Scholar 

  • Wetherill, G. W. (1975). Late heavy bombardment of the moon and terrestrial planets. In Proceedings 6th Lunar Science Conference (pp. 1539–1561), March 17–21, Houston, TX, Pergamon, New York.

    Google Scholar 

  • Wetherill, G. W. (1995). How special is Jupiter? Nature, 373, 470.

    Article  Google Scholar 

  • Wieczorek, M. A., & Zuber, M. T. (2001). The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling. Geophysical Reseach Letters, 28, 4023–4026.

    Article  Google Scholar 

  • Wielicki, M. M., & Harrison, T. M. (2015). Zircon formation in impact melts: Complications for deciphering planetary impact histories. Large Meteorite Impacts and Planetary Evolution V: Geological Society of America Special Paper, 518, 127–134.

    Article  Google Scholar 

  • Wilhelms, D. E. (1965). Fra Mauro and Cayley Formations in the Mare Vaporum and Julius Caesar quadrangles. U. S. Geological Survey open-file report 13, 28 pp.

    Google Scholar 

  • Wilhelms, D. E. (1970). Summary of lunar stratigraphy-telescopic observations. U.S. Geological Survey Professional Paper No. 599-F, 47 pp.

    Google Scholar 

  • Wisdom, J., & Tian, Z. (2015). Early evolution of the Earth-Moon system with a fast-spinning Earth. Icarus, 256, 138–146.

    Article  Google Scholar 

  • Wood, J. A., Dickey, J. S., Marvin, U. B., & Powell, B. N. (1970). Lunar anorthosites. Science, 167, 602–604.

    Article  Google Scholar 

  • Young, K. E., van Soest, M. C., Hodges, K. V., Watson, E. B., Adams, B. A., & Lee, P. (2013). Impact thermochronology and the age of Haughton impact structure, Canada. Geophysical Research Letters, 40, 3836–3840.

    Article  Google Scholar 

  • Zahnle, K., Arndt, N., Cockell, C., Halliday, A., Nisbet, E., Selsis, F., et al. (2007). Emergence of a habitable planet. Space Science Reviews, 129, 35–78.

    Article  Google Scholar 

  • Zappala, V., Cellino, A., Gladman, B. J., Manley, S., & Migliorini, F. (1998). Asteroid showers on Earth after family breakup events. Icarus, 134, 176–179.

    Article  Google Scholar 

  • Zellner, N. E. (2017). Cataclysm no more: New views on the timing and delivery of lunar impactors. Origins of Life and Evolution of Biospheres, 47, 261–280.

    Article  Google Scholar 

  • Zhang, J., Dauphas, N., Davis, A. M., Leya, I., & Fedkin, A. (2012). The proto-Earth as a significant source of lunar material. Nature Geoscience, 5, 251.

    Article  Google Scholar 

  • Zhang, B., Lin, Y., Moser D. E., Shieh, S. R., & Bouvier, A. (2018). Imbrium zircon age for Apollo 73155 Serenitatis impact melt breccia: Implications for the lunar bombardment. Bombardment: Shaping planetary surfaces and their environments 2018, LPI Contrib. No. 2107, Abstract 2021.

    Google Scholar 

  • Zharkov. (2000). On the history of the lunar orbit. Solar System Research 34, 1–11.

    Google Scholar 

  • Zhu, M. H., Artemieva, N., Morbidelli, A., Yin, Q. Z., Becker, H., & Wünnemann, K. (2019). Reconstructing the late-accretion history of the Moon. Nature, 571(7764), 226–229.

    Google Scholar 

  • Ziethe, R., Seiferlin, K., & Hiesinger, H. (2009). Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages. Planetary and Space Science, 57, 784–796.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). The Lunar Surface and Late Heavy Bombardment Concept. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_4

Download citation

Publish with us

Policies and ethics