Skip to main content

Morpho- and Chemo-Fossil Evidence of Early Life

  • Chapter
  • First Online:
Hadean Earth
  • 1166 Accesses

Abstract

This chapter summarizes what is known about the timing of the emergence of life on Earth from the morpho- and chemo-fossil (chemical and isotopic signals remaining from the decomposition of living organisms) records. The geologic record back to ca. 3.5 billion years includes low grade sedimentary rocks in which organic residues of microbiota present during deposition have remained substantially intact. As different metabolic mechanisms variably fractionate carbon isotopes toward isotopically light values, a longstanding strategy has been to measure δ13C in these organic residues, or kerogens, for biologic signatures. When compared to carbon isotopes in inorganic carbonate rocks, a consistent offset is seen throughout the past 3.5 billion years with inorganic carbon averaging δ13C close to 0‰ and kerogens yielding δ13C of approximately −25‰. As the latter value is broadly characteristic of oxygenating photosynthesis, this relationship has been seen as evidence of past biologic activity. However, as metamorphic grade increases, kerogens are reacted to simpler hydrocarbons, ultimately yielding graphitic residues. The discovery of isotopically light carbon isotopes in microscopic graphite inclusions in rocks as old as ca. 3.83 billion years and in a 4.1 Ga zircon extends the possible emergence of life on this planet back into the Hadean eon. Although inorganic mechanisms exist that could potentially produce light δ13C signatures, these isotopic data are consistent with molecular clock calibrations of genomic mutations which suggest a lower bound for the time of life’s origin between 4.1 and 4.4 billion years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fossilized remains of a lifeform recognized by their characteristic morphological features.

References

  • Alleon, J., & Summons, R. E. (2019). Organic geochemical approaches to understanding early life. Free Radical Biology and Medicine.

    Google Scholar 

  • Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A., & Heirwegh, C. M. (2018). Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature, 563, 241–244.

    Google Scholar 

  • Altermann, W., & Kazmierczak, J. (2003). Archean microfossils: A reappraisal of early life on Earth. Research in Microbiology, 154, 611–617.

    Article  Google Scholar 

  • Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W., et al. (2003). Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31, 431–434.

    Article  Google Scholar 

  • Awramik, S. M., Schopf, J. W., & Walter, M. R. (1983). Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Research, 20, 357–374.

    Article  Google Scholar 

  • Barghoorn, E. S., & Tyler, S. A. (1965). Microorganisms from the Gunflint chert. Science, 147, 563–577.

    Article  Google Scholar 

  • Barnes, R. M., Johnston, H. M., MacKenzie, N., Tobin, S. J., & Taglang, C. M. (2018). The effect of ad hominem attacks on the evaluation of claims promoted by scientists. PLoS ONE, 13, e0192025.

    Article  Google Scholar 

  • Battistuzzi, F. U., Feijão, A., & Hedges, S. B. (2004). A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology, 4, 44–51. https://doi.org/10.1186/1471-2148-4-44.

  • Bell, E. A., Boehnke, P., Barboni, M., & Harrison, T. M. (2019). Tracking chemical alteration in magmatic zircon using REE patterns. Chemical Geology, 510, 56–71.

    Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. (2015). Potentially biogenic carbon preserved in a 4.1 Ga zircon. Proceedings of The National Academy of Sciences, 112, 14518–14521.

    Google Scholar 

  • Bell, E. A., Boehnke, P., & Harrison, T. M. (2016). Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochimica et Cosmochimica Acta, 191, 187–202.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., & Harrison, T. M. (2017). Applications of biotite inclusion composition to zircon provenance determination. Earth and Planetary Science Letters, 473, 237–246.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Wielicki, M. M. (2018). Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477, 151–160.

    Article  Google Scholar 

  • Bell, E. A., & Harrison, T. M. (2013). Post-Hadean transitions in Jack Hills zircon provenance: A signal of the Late Heavy Bombardment? Earth and Planetary Science Letters, 364, 1–11.

    Article  Google Scholar 

  • Bernet, M. (2009). A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259, 181–189.

    Article  Google Scholar 

  • Betts, H. C., Puttick, M. N., Clark, J. W., Williams, T. A., Donoghue, P. C., & Pisani, D. (2018). Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nature Ecology & Evolution, 2, 1556–1562.

    Google Scholar 

  • Beyssac, O., Goffé, B., Petitet, J. P., Froigneux, E., Moreau, M., & Rouzaud, J. N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2267–2276.

    Google Scholar 

  • Boato, G. (1954). The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochimica et Cosmochimica Acta, 6, 209–220.

    Article  Google Scholar 

  • Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., & Kolosov, P. (1993). Calibrating rates of Early Cambrian evolution. Science, 261, 1293–1298.

    Article  Google Scholar 

  • Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., et al. (2002). Questioning the evidence for Earth’s oldest fossils. Nature, 416, 76–81.

    Article  Google Scholar 

  • Brasier, M. D., Antcliffe, J., Saunders, M., & Wacey, D. (2015). Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proceedings of the National Academy of Sciences, 112, 4859–4864.

    Article  Google Scholar 

  • Cates, N. L., & Mojzsis, S. J. (2006). Chemical and isotopic evidence for widespread Eoarchean (≥3750 Ma) metasedimentary enclaves in southern West Greenland. Geochimica et Cosmochimica Acta, 70, 4229–4257.

    Article  Google Scholar 

  • Cherniak, D. J., Lanford, W. A., & Ryerson, F. J. (1991). Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta, 55, 1663–1673.

    Article  Google Scholar 

  • Clayton, R. N. (1993). Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences, 21, 115–149.

    Article  Google Scholar 

  • Delacour, A., Früh-Green, G. L., Bernasconi, S. M., Schaeffer, P., & Kelley, D. S. (2008). Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR). Geochimica et Cosmochimica Acta, 72, 3681–3702.

    Article  Google Scholar 

  • Des Marais, D. J. (1997). Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Organic Geochemistry, 27, 185–193.

    Article  Google Scholar 

  • Dobrzhinetskaya, L., Wirth, R., & Green, H. (2014). Diamonds in Earth’s oldest zircons from Jack Hills conglomerate Australia are contamination. Earth and Planetary Science Letters, 387, 212–218.

    Article  Google Scholar 

  • Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., et al. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543, 60–64.

    Article  Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64, 1315–1326.

    Article  Google Scholar 

  • Farquhar, J., Wing, B. A., McKeegan, K. D., Harris, J. W., Cartigny, P., & Thiemens, M. H. (2002). Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298, 2369–2372.

    Article  Google Scholar 

  • Fedo, C. M., & Whitehouse, M. J. (2002). Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science, 296, 1448–1452.

    Article  Google Scholar 

  • Fuchs, G., Thauer, R., Ziegler, H., & Stichler, W. (1979). Carbon isotope fractionation by Methanobacterium thermoautotrophicum. Archives of Microbiology, 120, 135–139.

    Article  Google Scholar 

  • Gleadow, A. J. W. (1978). Anisotropic and variable track etching characteristics in natural sphenes. Nuclear Track Detection, 2, 105–117.

    Article  Google Scholar 

  • Griffin, W. L., McGregor, V. R., Nutman, A., Taylor, P. N., & Bridgwater, D. (1980). Early Archaean granulite-facies metamorphism south of Ameralik, West Greenland. Earth and Planetary Science Letters, 50, 59–74.

    Article  Google Scholar 

  • Grotzinger, J. P., & Rothman, D. H. (1996). An abiotic model for stromatolite morphogenesis. Nature, 383, 423–425.

    Article  Google Scholar 

  • Hayes, J. M., Des Marais, I. B., Lambert, H., Strauss, H., & Summons, R. E. (1992). Proterozoic biogeochemistry. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere (pp. 81–134). New York: Cambridge University Press.

    Google Scholar 

  • Hedges, S. B. (2009). Life. In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 89–98). Oxford: Oxford University Press.

    Google Scholar 

  • Hoefs, J., & Hoefs, J. (1980). Stable isotope geochemistry. Berlin: Springer.

    Book  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from >4 Ga zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2010). Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters, 298, 367–376.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2012). Comment: Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth. Geology, 40, e281–e281.

    Article  Google Scholar 

  • Hourigan, J. K., Reiners, P. W., & Brandon, M. T. (2005). U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta, 69, 3349–3365.

    Article  Google Scholar 

  • House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., & Stetter, K. O. (2000). Carbon isotopic composition of individual Precambrian microfossils. Geology, 28, 707–710.

    Article  Google Scholar 

  • Hunt, M. J. (1979). Petroleum geochemistry and geology. New York: W. H. Freeman and Company.

    Google Scholar 

  • Kanter, M. A. (1957). Diffusion of carbon atoms in natural graphite crystals. Physical Review, 107, 655–663.

    Article  Google Scholar 

  • Keppler, H., Wiedenbeck, M., & Shcheka, S. S. (2003). Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature, 424, 414–416.

    Article  Google Scholar 

  • Kerridge, J. F. (1985). Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta, 49, 1707–1714.

    Article  Google Scholar 

  • Krzycki, J. A., Kenealy, W. R., DeNiro, M. J., & Zeikus, J. G. (1987). Stable carbon isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol, or carbon dioxide-hydrogen. Applied and Environmental Microbiology, 53, 2597–2599.

    Article  Google Scholar 

  • Lancet, M. S., & Anders, E. (1970). Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science, 170, 980–982.

    Article  Google Scholar 

  • Lane, N., Allen, J. F., & Martin, W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 32, 271–280.

    Article  Google Scholar 

  • Lepland, A., van Zuilen, M. A., Arrhenius, G., Whitehouse, M. J., & Fedo, C. M. (2005). Questioning the evidence for Earth’s earliest life—Akilia revisited. Geology, 33, 77–79.

    Article  Google Scholar 

  • Manning, C. E., Mojzsis, S. J., & Harrison, T. M. (2006). Geology, age and origin of supracrustal rocks at Akilia, West Greenland. American Journal of Science, 306, 303–366.

    Article  Google Scholar 

  • Marshall, M. (2019). Life’s dark ages. New Scientist, 241, 28–32.

    Article  Google Scholar 

  • Marty, B., Alexander, C. M. D., & Raymond, S. N. (2013). Primordial origins of Earth’s carbon. Reviews in Mineralogy and Geochemistry, 75, 149–181.

    Article  Google Scholar 

  • McCollom, T. M. (2013). Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Reviews in Mineralogy and Geochemistry, 75, 467–494.

    Article  Google Scholar 

  • McCollom, T. M., & Seewald, J. S. (2013). Serpentinites, hydrogen, and life. Elements, 9, 129–134.

    Article  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.

    Google Scholar 

  • McGregor, V. R., & Mason, B. (1977). Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amıtsoq gneisses, West Greenland. American Mineralogist, 62, 887–904.

    Google Scholar 

  • McKeegan, K. D., Kudryavtsev, A. B., & Schopf, J. W. (2007). Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, West Greenland. Geology, 35, 591–594.

    Article  Google Scholar 

  • McMahon, S. (2019). Earth's earliest and deepest purported fossils may be iron-mineralized chemical gardens. Proceedings of the Royal Society B: Biological Sciences, 286(1916), 20192410.

    Google Scholar 

  • Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T., & Wilde, S. A. (2007). Hadean diamonds in zircon from Jack Hills Western Australia. Nature, 448, 917–920.

    Article  Google Scholar 

  • Mojzsis, S. J., & Harrison, T. M. (2002a). Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth and Planetary Science Letters, 202, 563–576.

    Article  Google Scholar 

  • Mojzsis, S. J., & Harrison, T. M. (2002b). Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science, 298, 917a.

    Article  Google Scholar 

  • Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., & Friend, C. R. L. (1996). Evidence for life on Earth by 3800 Myr. Nature, 384, 55–59.

    Article  Google Scholar 

  • Mojzsis, S. J., Harrison, T. M., Arrhenius, G., McKeegan, K. D., & Grove, M. (1999). Origin of life from apatite dating? Reply. Nature, 400, 127–128.

    Article  Google Scholar 

  • Moorbath, S. (2005). Palaeobiology: Dating earliest life. Nature, 434, 155–156.

    Article  Google Scholar 

  • Moorbath, S. (2009). The discovery of the Earth’s oldest rocks. Notes and Records of the Royal Society.

    Google Scholar 

  • Mueller, T., Watson, E. B., Trail, D., Wiedenbeck, M., Van Orman, J., & Hauri, E. H. (2014). Diffusive fractionation of carbon isotopes in γ-Fe: Experiment, models and implications for early solar system processes. Geochimica et Cosmochimica Acta, 127, 57–66.

    Article  Google Scholar 

  • Myers, J. S., & Crowley, J. L. (2000). Vestiges of life in the oldest Greenland rocks? A review of early Archean geology in the Godthåbsfjord region, and reappraisal of field evidence for >3850 Ma life on Akilia. Precambrian Research, 103, 101–124.

    Article  Google Scholar 

  • Neveu, M., Hays, L. E., Voytek, M. A., New, M. H., & Schulte, M. D. (2018). The ladder of life detection. Astrobiology, 18, 1375–1402.

    Article  Google Scholar 

  • Noffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology, 13, 1103–1124.

    Article  Google Scholar 

  • Nutman, A. P., & Friend, C. R. (2006). Petrography and geochemistry of apatites in banded iron formation, Akilia, W. Greenland: Consequences for oldest life evidence. Precambrian Research, 147, 100–106.

    Article  Google Scholar 

  • Nutman, A. P., McGregor, V. R., Friend, C. R. L., Bennett, V. C., & Kinny, P. D. (1996). The Itsaq Gneiss Complex of southern west Greenland; The world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambrian Research, 78, 1–39.

    Article  Google Scholar 

  • Nutman, A. P., Mojzsis, S. J., & Friend, C. R. (1997). Recognition of ≥3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochimica et Cosmochimica Acta, 61, 2475–2484.

    Article  Google Scholar 

  • Nutman, A. P., Bennett, V. C., Friend, C. R., Van Kranendonk, M. J., & Chivas, A. R. (2016). Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature, 537, 535–538.

    Article  Google Scholar 

  • Nutman, A. P., Bennett, V. C., Friend, C. R., Van Kranendonk, M. J., Rothacker, L., & Chivas, A. R. (2019). Cross-examining Earth’s oldest stromatolites: Seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland) ~3700 Ma sedimentary rocks. Precambrian Research. https://doi.org/10.1016/j.precamres.2019.105347.

  • Pearson, D. G., Canil, D., & Shirey, S. B. (2003). Mantle samples included in volcanic rocks: Xenoliths and diamonds. Treatise on Geochemistry (Elsevier, Amsterdam), 2, 171–275.

    Article  Google Scholar 

  • Pearson, V. K., Sephton, M. A., Franchi, I. A., Gibson, J. M., & Gilmour, I. (2006). Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions. Meteoritics & Planetary Science, 41, 1899–1918.

    Article  Google Scholar 

  • Petrov, A. S., Gulen, B., Norris, A. M., Kovacs, N. A., Bernier, C. R., Lanier, K. A., et al. (2015). History of the ribosome and the origin of translation. Proceedings of the National Academy of Sciences, 112, 15396–15401.

    Article  Google Scholar 

  • Pisani, D., & Liu, A. G. (2015). Animal evolution: Only rocks can set the clock. Current Biology, 25, R1079–R1081.

    Article  Google Scholar 

  • Preuss, A., Schauder, R., Fuchs, G., & Stichler, W. (1989). Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Zeitschrift für Naturforschung C, 44, 397–402.

    Article  Google Scholar 

  • Rasmussen, B., Fletcher, I. R., Muhling, J. R., Gregory, C. J., & Wilde, S. A. (2011). Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills Australia: Implications for the Hadean Earth. Geology, 39, 1143–1146.

    Article  Google Scholar 

  • Roeske, C. A., & O’Leary, M. H. (1984). Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry, 23, 6275–6284.

    Article  Google Scholar 

  • Rosing, M. T. (1999). 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Article  Google Scholar 

  • Sano, Y., Terada, K., Takahashi, Y., & Nutman, A. P. (1999). Origin of life from apatite dating? Nature, 400, 127–129.

    Article  Google Scholar 

  • Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept. Precambrian Research, 106, 117–134.

    Article  Google Scholar 

  • Schidlowski, M., Hayes, J. M., & Kaplan, I. R. (1983). Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen, and nitrogen. In J. W. Schopf (Ed.), The Earth’s earliest biosphere (pp. 149–185). Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Schopf, J. W. (1993). Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science, 260, 640–646.

    Article  Google Scholar 

  • Schopf, J. W. (2014). Geological evidence of oxygenic photosynthesis and the biotic response to the 2400–2200 Ma “great oxidation event”. Biochemistry (Moscow), 79, 165–177.

    Article  Google Scholar 

  • Schopf, J. W., Kitajima, K., Spicuzza, M. J., Kudryavtsev, A. B., & Valley, J. W. (2018). SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proceedings of the National Academy of Sciences, 115, 53–58.

    Google Scholar 

  • Schopf, J. W., & Packer, B. M. (1987). Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237, 70–73.

    Article  Google Scholar 

  • Schwartz, J. H., & Maresca, B. (2006). Do molecular clocks run at all? A critique of molecular systematics. Biological Theory, 1, 357–371.

    Article  Google Scholar 

  • Sephton, M. A., Verchovsky, A. B., Bland, P. A., Gilmour, I., Grady, M. M., & Wright, I. P. (2003). Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 67, 2093–2108.

    Article  Google Scholar 

  • Shilobreeva, S., et al. (2011). Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochimica et Cosmochimica Acta, 75, 2237–2255.

    Article  Google Scholar 

  • Simmons, J. H. W. (2013). Radiation damage in graphite: International series of monographs in nuclear energy (Vol. 102). Elsevier.

    Google Scholar 

  • Stachel, T., Harris, J. W., & Muehlenbachs, K. (2009). Sources of carbon in inclusion bearing diamonds. Lithos, 112, 625–637.

    Article  Google Scholar 

  • Strauss, H., & Moore, T. B. (1992). The Proterozoic biosphere: A multidisciplinary study (J. W. Schopf & C. Klein, Eds.) (pp. 93–134). New York: Cambridge University Press.

    Google Scholar 

  • Tashiro, T., Ishida, A., Hori, M., Igisu, M., Koike, M., Méjean, P., et al. (2017). Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature, 549, 516–517.

    Article  Google Scholar 

  • Ueno, Y., Isozaki, Y., Yurimoto, H., & Maruyama, S. (2001). Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. International Geology Review, 43, 196–212.

    Article  Google Scholar 

  • Ueno, Y., Yoshioka, H., Maruyama, S., & Isozaki, Y. (2004). Carbon isotopes and petrography of kerogens in ~3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia1. Geochimica et Cosmochimica Acta, 68, 573–589.

    Article  Google Scholar 

  • Vacher, L. G., Marrocchi, Y., Villeneuve, J., Verdier-Paoletti, M. J., & Gounelle, M. (2017). Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of CM chondrites. Geochimica et Cosmochimica Acta, 213, 271–290.

    Article  Google Scholar 

  • Van Zuilen, M. A., Lepland, A., & Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630.

    Article  Google Scholar 

  • Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J., & Brasier, M. D. (2011). Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience, 4, 698–701.

    Article  Google Scholar 

  • Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., et al. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1, 16116.

    Article  Google Scholar 

  • Whitehouse, M. J., & Kamber, B. S. (2004). Assigning dates to thin gneissic veins in high-grade metamorphic terranes: A cautionary tale from Akilia, southwest Greenland. Journal of Petrology, 46, 291–318.

    Article  Google Scholar 

  • Whitehouse, M. J., Kamber, B. S., & Moorbath, S. (1999). Age significance of U-Th–Pb zircon data from early Archaean rocks of West Greenland—A reassessment based on combined ion-microprobe and imaging studies. Chemical Geology, 160, 201–224.

    Article  Google Scholar 

  • Whitehouse, M. J., Dunkley, D. J., Kusiak, M. A., & Wilde, S. A. (2019). On the true antiquity of Eoarchean chemofossils—Assessing the claim for Earth’s oldest biogenic graphite in the Saglek Block of Labrador. Precambrian Research, 323. https://doi.org/10.1016/j.precamres.2019.01.001.

  • Wickman, F. E. (1952). Variations in the relative abundance of the carbon isotopes in plants. Geochimica et Cosmochimica Acta, 2, 243–254.

    Article  Google Scholar 

  • Woese, C. (1998). The universal ancestor. Proceedings of the National Academy of Sciences, 95, 6854–6859.

    Article  Google Scholar 

  • Zuckerkandl, E., & Pauling, L. (1965). Molecules as documents of evolutionary history. Journal of Theoretical Biology, 8, 357–366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Morpho- and Chemo-Fossil Evidence of Early Life. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_11

Download citation

Publish with us

Policies and ethics