Skip to main content

Could the Hadean Eon Have Been Habitable?

  • Chapter
  • First Online:
Hadean Earth

Abstract

Given the absence of a macroscopic Hadean rock record, evaluating terrestrial habitability is largely a thought experiment, but data from Hadean zircons can provide some constraints. We are certain that life as we know it would not be possible without four requirements; soluble bioactive elements (carbon, hydrogen, oxygen, nitrogen, sulfur and phosphorous), free energy, liquid water, and time. Beyond these essential ingredients, there is broad agreement that there are ten secondary factors that separate us from the other, uninhabited terrestrial planets and maintain our planet’s homeostasis. They are: (1) a galactic and planetary sanctuary for life; (2) liquid water at the planetary surface to mediate biochemistry and efficiently cool the planet; (3) dissolved water in the deep planetary interior to enhance mantle circulation and catalyze the eclogite transition; (4) a broadly solar chemical composition to provide sufficient metallicity for a stable surface platform; (5) sufficient planetary mass to retain an atmosphere and heat; (6) planetary satellite(s) to stabilize climate zones; (7) extra-planetary impactors to introduce organic building blocks and water and to create satellites; (8) long-term interior heat generation to maintain mantle circulation and the geodynamo; (9) a self-sustaining dynamo to protect the atmosphere is erosion; and (10) a mechanism to recycle surface carbon into the interior and back. Evaluating how these various factors interact is complicated but our speculations can be guided by inferences from Hadean zircon geochemistry which potentially bear on six of the ten ingredients for life—the presence of surface and interior water, the role of impacts on early Earth, internal heat generation, surface recycling, and the existence of a Hadean geodynamo. Knowledge of the geochemistry and inclusion population of Hadean zircons also permits constraints to be placed on whether mineral phases and trace elements key to biopoiesis were present during the Hadean eon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For our purposes, life is defined as a chemically-based cellular organism with the capacity for metabolism, reproduction, variation and heredity.

  2. 2.

    Wollastonite is a rare mineral but a useful analogue for plagioclase feldspar which constitutes a plurality of continental crust.

References

  • Abe, Y. (2007). Behavior of water during terrestrial planet formation. Geochimica et Cosmochimica Acta, 71, A2.

    Article  Google Scholar 

  • Abramov, O., & Mojzsis, S. J. (2009). Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature, 459, 419–422.

    Article  Google Scholar 

  • Adamala, K., Anella, F., Wieczorek, R., Stano, P., Chiarabelli, C., & Luisi, P. L. (2014). Open questions in origin of life: Experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach. Computational and Structural Biotechnology Journal, 9, e201402004.

    Article  Google Scholar 

  • Ahrens, T. J., & Schubert, G. (1975). Gabbro-eclogite reaction rate and its geophysical significance. Reviews of Geophysics, 13, 383–400.

    Article  Google Scholar 

  • Alexander, C. M. D., Bowden, R., Fogel, M. L., Howard, K. T., Herd, C. D. K., & Nittler, L. R. (2012). The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science, 337, 721–723.

    Article  Google Scholar 

  • Alexander, C. M. D., McKeegan, K. D., & Altwegg, K. (2018). Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214(36), 1–47.

    Google Scholar 

  • Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J. J., Bieler, A., Bochsler, P., et al. (2015). 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science, 347. https://doi.org/10.1126/science.1261952.

  • Alvarez, W., & Asaro, F. (1990). An extraterrestrial impact. Scientific American, 263, 78–84.

    Article  Google Scholar 

  • Anderson, D. L. (1982). Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297, 391–393.

    Article  Google Scholar 

  • Anglada-Escudé, G., Amado, P. J., Barnes, J., Berdinas, Z. M., Butler, R. P., Coleman, G. A., et al. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536, 437–440.

    Article  Google Scholar 

  • Arrhenius, S. (1908). Worlds in the making: The evolution of the universe. Harper and Brothers.

    Google Scholar 

  • Aulbach, S., & Stagno, V. (2016). Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology, 44, 751–754.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. L. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences, 112(47), 14518–14521.

    Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Wielicki, M. M. (2018). Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477, 151–160.

    Article  Google Scholar 

  • Betts, H. C., Puttick, M. N., Clark, J. W., Williams, T. A., Donoghue, P. C., & Pisani, D. (2018). Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nature Ecology & Evolution, 2, 1556–1562.

    Google Scholar 

  • Biggin, A. J., de Wit, M. J., Langereis, C. G., Zegers, T. E., Voûte, S., Dekkers, M. J., & Drost, K. (2011). Palaeomagnetism of Archaean rocks of the Onverwacht Group, Barberton Greenstone Belt (southern Africa): Evidence for a stable and potentially reversing geomagnetic field at ca. 3.5 Ga. Earth and Planetary Science Letters, 302, 314–328.

    Google Scholar 

  • Brin, G. D. (1983). The great silence—The controversy concerning extraterrestrial intelligent life. Quarterly Journal of the Royal Astronomical Society, 24, 283–309.

    Google Scholar 

  • Bryan, M. L., Knutson, H. A., Howard, A. W., Ngo, H., Batygin, K., Crepp, J. R., et al. (2016). Statistics of long period gas giant planets in known planetary systems. The Astrophysical Journal, 821, 89.

    Article  Google Scholar 

  • Buffett, B. A. (2003). The thermal state of Earth’s core. Science, 299, 1675–1677.

    Article  Google Scholar 

  • Carter, B. (1983). The anthropic principle and its implications for biological evolution. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 310, 347–363.

    Article  Google Scholar 

  • Castelle, C. J., & Banfield, J. F. (2018). Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell, 172, 1181–1197.

    Article  Google Scholar 

  • Chambers, J. (2004). Planetary accretion in the inner solar system. Earth and Planetary Science Letters, 223, 241–252.

    Article  Google Scholar 

  • Chopra, A., & Lineweaver, C. H. (2016). The case for a Gaian bottleneck: The biology of habitability. Astrobiology, 16, 7–22.

    Article  Google Scholar 

  • Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L., & Bada, J. L. (2008). A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of Biospheres, 38, 105–115.

    Article  Google Scholar 

  • Commeyras, A., Collet, H., Boiteau, L., Taillades, J., Vandenabeele-Trambouze, O., Cottet, H., et al. (2002). Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polymer International, 51, 661–665.

    Article  Google Scholar 

  • Conselice, C. J., Wilkinson, A., Duncan, K., & Mortlock, A. (2016). The evolution of galaxy number density at z < 8 and its implications. The Astrophysical Journal, 830, 83–93.

    Article  Google Scholar 

  • Cramer, J. G. (1986). The pump of evolution. Analog Science Fiction & Fact Magazine, 106, 124–127.

    Google Scholar 

  • Crick, F. H. (1981). Life itself: Its origin and nature (p. 192). New York: Simon and Schuster.

    Google Scholar 

  • Crick, F. H., & Orgel, L. E. (1973). Directed panspermia. Icarus, 19, 341–346.

    Article  Google Scholar 

  • Darling, D. (2001). Life everywhere: The maverick science of astrobiology (p. 206). New York, NY: Basic Books.

    Google Scholar 

  • Darwin, C. R. (1871). The descent of man and selection in relation to sex (p. 589). London: John Murray.

    Book  Google Scholar 

  • Davies, J. H., & Davies, D. R. (2009). Earth’s surface heat flux. Solid Earth Discussions, 1, 1–45.

    Article  Google Scholar 

  • de Montserrat Navarro, A., Morgan, J. P., Vannucchi, P., Connolly, J. A. (2016). Has Earth’s plate tectonics led to rapid core cooling? AGU Fall Meeting Abstracts.

    Google Scholar 

  • Dick, H. J., Lin, J., & Schouten, H. (2003). An ultraslow-spreading class of ocean ridge. Nature, 426, 405–412.

    Article  Google Scholar 

  • Dole, S. H. (1964). Habitable planets for man. New York: Blaisdell Publ. Co.

    Google Scholar 

  • Drake, M. J. (2005). Origin of water in the terrestrial planets. Meteoritics & Planetary Science, 40, 519–527.

    Article  Google Scholar 

  • Drake, F., & Sobel, D. (1992). Is anyone out there?: The scientific search for extraterrestrial intelligence. Delacorte Press.

    Google Scholar 

  • Dye, S. T. (2012). Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics, 50, 2012RG000400, 19 pp.

    Google Scholar 

  • Elkins-Tanton, L. T. (2008). Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth and Planetary Science Letters, 271, 181–191.

    Article  Google Scholar 

  • Elsasser, W. M. (1958). The earth as a dynamo. Scientific American, 198, 44–49.

    Article  Google Scholar 

  • Farquhar, J., Bao, H., & Thiemens, M. (2000). Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756–758.

    Article  Google Scholar 

  • Fei, H., Yamazaki, D., Sakurai, M., Miyajima, N., Ohfuji, H., Katsura, T., et al. (2017). A nearly water-saturated mantle transition zone inferred from mineral viscosity. Science Advances, 3, e1603024.

    Article  Google Scholar 

  • Fernández, Y. R. (2003). The nucleus of comet Hale-Bopp (C/1995 O1): Size and activity. In International Astronomical Union Colloquium (Vol. 186, pp. 3–25). Cambridge University Press.

    Google Scholar 

  • Forsyth, D., & Uyeda, W. S. (1975). On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 4, 163–200.

    Article  Google Scholar 

  • France-Lanord, C., & Derry, L. A. (1997). Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390, 65–67.

    Article  Google Scholar 

  • Frank, A., & Sullivan, W. T. (2016). A new empirical constraint on the prevalence of technological species in the universe. Astrobiology, 16, 359–362.

    Article  Google Scholar 

  • Frank, E. A., Meyer, B. S., & Mojzsis, S. J. (2014). A radiogenic heating evolution model for cosmochemically Earth-like exoplanets. Icarus, 243, 274–286.

    Article  Google Scholar 

  • Genda, H., & Abe, Y. (2005). Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature, 433, 842–844.

    Article  Google Scholar 

  • Gonzalez, G., Brownlee, D., & Ward, P. (2001). The galactic habitable zone: Galactic chemical evolution. Icarus, 152, 185–200.

    Article  Google Scholar 

  • Grew, E. S., Bada, J. L., & Hazen, R. M. (2011). Borate minerals and origin of the RNA world. Origins of Life and Evolution of Biospheres, 41, 307–316.

    Article  Google Scholar 

  • Griffith, E. J., Ponnamperuma, C., & Gabel, N. W. (1977). Phosphorus, a key to life on the primitive earth. Origins of Life and Evolution of Biospheres, 8, 1–85.

    Google Scholar 

  • Griggs, D. T., & Blacic, J. D. (1965). Quartz: Anomalous weakness of synthetic crystals. Science, 147, 292–295.

    Article  Google Scholar 

  • Grossman, L. (1972). Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619.

    Article  Google Scholar 

  • Gubbins, D., Alfe, D., Masters, G., Price, G. D., & Gillan, M. (2004). Gross thermodynamics of two-component core convection. Geophysical Journal International, 157, 1407–1414.

    Article  Google Scholar 

  • Haldane, J. B. S. (1929). The orgin of life. Rationalist Annual, 3, 3–10.

    Google Scholar 

  • Hamano, K., Abe, Y., & Genda, H. (2013). Emergence of two types of terrestrial planet on solidification of magma ocean. Nature, 497, 607–610.

    Article  Google Scholar 

  • Harrison, T. M., Copeland, P., Kidd, W. S. F., & Yin, A. N. (1992). Raising Tibet. Science, 255, 1663–1670.

    Article  Google Scholar 

  • Hart, M. H. (1975). Explanation for the absence of extraterrestrials on earth. Quarterly Journal of the Royal Astronomical Society, 16, 128–135.

    Google Scholar 

  • Hart, M. H. (1979). Habitable zones about main sequence stars. Icarus, 37, 351–357.

    Article  Google Scholar 

  • Hartogh, P., Lis, D. C., Bockelée-Morvan, D., de Val-Borro, M., Biver, N., Küppers, M., et al. (2011). Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature, 478, 218.

    Article  Google Scholar 

  • Hazen, R. M. (2013). Paleomineralogy of the Hadean Eon: A preliminary species list. American Journal of Science, 313, 807–843.

    Article  Google Scholar 

  • Hazen, R. M., Gagné, O. C., Liu, C., Morrison, S. M., & Runyon, S. E. (2019). Mineral environments of the Hadean Eon: Implications for Earth’s geochemical evolution and the origins of life. In Abstracts, 2019 Astrobiology Conference.

    Google Scholar 

  • Hevey, P. J., & Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95–106.

    Article  Google Scholar 

  • Hirschmann, M. M. (2006). Water, melting, and the deep Earth H2O cycle. Annual Review of Earth and Planetary Sciences, 34, 629–653.

    Article  Google Scholar 

  • Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108.

    Article  Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A neoproterozoic snowball Earth. Science, 281, 1342–1346.

    Article  Google Scholar 

  • Höning, D., Hansen-Goos, H., Airo, A., & Spohn, T. (2014). Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science, 98, 5–13.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from >4 Ga zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.

    Article  Google Scholar 

  • Horner, J., & Jones, B. W. (2009). Jupiter—Friend or foe? II: The Centaurs. International Journal of Astrobiology, 8, 75–80.

    Article  Google Scholar 

  • Hubble, E. (1926). Extragalactic nebulae. Astrophysical Journal, 64, 321–369.

    Article  Google Scholar 

  • Hunten, D. M., & Donahue, T. M. (1976). Hydrogen loss from the terrestrial planets. Annual Review of Earth and Planetary Sciences, 4, 265–292.

    Article  Google Scholar 

  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293–305.

    Google Scholar 

  • Isson, T. T., & Planavsky, N. J. (2018). Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature, 560, 471.

    Article  Google Scholar 

  • Ito, K., & Kennedy, G. C. (1967). Melting and phase relations in a natural peridotite to 40 kilobars. American Journal of Science, 265, 519–538.

    Article  Google Scholar 

  • Ito, K., & Kennedy, G. C. (1970). The fine structure of the basalt-eclogite transition. Mineralogical Society of America Special Papers, 3, 77–83.

    Google Scholar 

  • Kasting, J. (2010). How to find a habitable planet. Princeton University Press.

    Google Scholar 

  • Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108–128.

    Article  Google Scholar 

  • Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., et al. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 77–780.

    Article  Google Scholar 

  • Kirchner, J. W. (1991). The Gaia hypotheses: Are they testable? Are they useful? In S. Schneider (Ed.), Scientists on Gaia. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kite, E. S., Gaidos, E., & Manga, M. (2011). Climate instability on tidally locked exoplanets. The Astrophysical Journal, 743, 41 (12 pp.).

    Google Scholar 

  • Koga, T., & Naraoka, H. (2017). A new family of extraterrestrial amino acids in the Murchison meteorite. Scientific Reports, 7.

    Google Scholar 

  • Kopparapu, R. K., Ramirez, R. M., SchottelKotte, J., Kasting, J. F., Domagal-Goldman, S., & Eymet, V. (2014). Habitable zones around main-sequence stars: Dependence on planetary mass. The Astrophysical Journal Letters, 787(L29), 1–6.

    Google Scholar 

  • Korenaga, J. (2013). Initiation and evolution of plate tectonics on Earth: Theories and observations. Annual Review of Earth and Planetary Sciences, 41, 117–151.

    Google Scholar 

  • Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., & Cech, T. R. (1982). Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31, 147–157.

    Article  Google Scholar 

  • Labrosse, S., Poirier, J. P., & Le Mouël, J. L. (2001). The age of the inner core. Earth and Planetary Science Letters, 190, 111–123.

    Article  Google Scholar 

  • Labrosse, S., Hernlund, J. W., & Coltice, N. (2007). A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450, 866–869.

    Article  Google Scholar 

  • Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y. N., & Tian, F. (2008). Atmospheric escape and evolution of terrestrial planets and satellites. Space Science Reviews, 139, 399–436.

    Article  Google Scholar 

  • Lammer, H., Kislyakova, K. G., Odert, P., Leitzinger, M., Schwarz, R., Pilat-Lohinger, E., Kulikov, Y. N., Khodachenko, M. L., Güdel, M., & Hanslmeier, A. (2011). Pathways to earth-like atmospheres. Origins of Life and Evolution of Biospheres, 41(6), 503–522.

    Google Scholar 

  • Lammer, H., Selsis, F., Chassefière, E., Breuer, D., Grießmeier, J. M., Kulikov, Y. N., et al. (2010). Geophysical and atmospheric evolution of habitable planets. Astrobiology, 10, 45–68.

    Article  Google Scholar 

  • Laskar, J., & Robutel, P. (1993). The chaotic obliquity of the planets. Nature, 361, 608–612.

    Article  Google Scholar 

  • Lathe, R. (2004). Fast tidal cycling and the origin of life. Icarus, 168, 18–22.

    Article  Google Scholar 

  • Lathe, R. (2006). Early tides: Response to Varga et al. Icarus, 180, 277–280.

    Google Scholar 

  • Lineweaver, C. H. (2001). An estimate of the age distribution of terrestrial planets in the universe: Quantifying metallicity as a selection effect. Icarus, 151, 307–313.

    Article  Google Scholar 

  • Lineweaver, C. H., & Chopra, A. (2012). What can life on Earth tell us about life in the universe? In Genesis—In the beginning (pp. 799–815). Dordrecht: Springer.

    Google Scholar 

  • Lineweaver, C. H., & Davis, T. M. (2002). Does the rapid appearance of life on Earth suggest that life is common in the universe? Astrobiology, 2, 293–304.

    Article  Google Scholar 

  • Lineweaver, C. H., Fenner, Y., & Gibson, B. K. (2004). The galactic habitable zone and the age distribution of complex life in the Milky Way. Science, 303, 59–62.

    Article  Google Scholar 

  • Lis, D. C., Biver, N., Bockelée-Morvan, D., Hartogh, P., Bergin, E. A., Blake, G. A., et al. (2013). A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková and prospects for D/H measurements with CCAT. The Astrophysical Journal Letters, 774, L3.

    Article  Google Scholar 

  • Lis, D. C., Bockelée-Morvan, D., Güsten, R., Biver, N., Stutzki, J., Delorme, Y., et al. (2019). Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets. Astronomy & Astrophysics, 625, L5.

    Article  Google Scholar 

  • Lissauer, J. J., Barnes, J. W., & Chambers, J. E. (2012). Obliquity variations of a moonless Earth. Icarus, 217, 77–87.

    Article  Google Scholar 

  • Lodders, K., Palme, H., & Gail, H. P. (2010). Solar system abundances of the elements. In Principles and perspectives in cosmochemistry (pp. 379–417).

    Google Scholar 

  • Lovelock, J. E., & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus, 26, 2–10.

    Article  Google Scholar 

  • Lyubetskaya, T., & Korenaga, J. (2007). Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research, 112, B03211. https://doi.org/10.1029/2005JB004223.

    Article  Google Scholar 

  • Macdonald, K. C., Becker, K., Spiess, F. N., & Ballard, R. D. (1980). Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth and Planetary Science Letters, 48, 1–7.

    Article  Google Scholar 

  • Marty, B. (2012). The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 56–66.

    Google Scholar 

  • Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378, 355–359.

    Article  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1989). The composition of the Earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  • McKenzie, D. P. (1970). Temperature and potential temperature beneath island arcs. Tectonophysics, 10, 357–366.

    Article  Google Scholar 

  • Miller, S. L., & Urey, H. C. (1959). Origin of life. Science, 130, 1622–1624.

    Article  Google Scholar 

  • Moore, W. B., Lenardic, A., Jellinek, A. M., Johnson, C. L., Goldblatt, C., & Lorenz, R. D. (2017). How habitable zones and super-Earths lead us astray. Nature Astronomy, 1. https://doi.org/10.1038/s41550-017-0043.

  • Morrison, S., Runyon, S., & Hazen, R. (2018). The paleomineralogy of the Hadean Eon revisited. Life, 8, 64.

    Article  Google Scholar 

  • Mulders, G. D., Pascucci, I., & Apai, D. (2015). A stellar-mass-dependent drop in planet occurrence rates. Astrophysical Journal, 798, 112, 18 pp.

    Google Scholar 

  • Nakagawa, T., Nakakuki, T., & Iwamori, H. (2015). Water circulation and global mantle dynamics: Insight from numerical modeling. Geochemistry, Geophysics, Geosystems, 16, 1449–1464.

    Article  Google Scholar 

  • Neveu, M., Kim, H. J., & Benner, S. A. (2013). The “strong” RNA world hypothesis: Fifty years old. Astrobiology, 13, 391–403.

    Article  Google Scholar 

  • Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E., Nisbet, E. G., et al. (2019). Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochimica et Cosmochimica Acta, 250, 49–75.

    Article  Google Scholar 

  • Nimmo, F., & Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal of Geophysical Research: Planets, 105, 11969–11979.

    Article  Google Scholar 

  • Nimmo, F., Price, G. D., Brodholt, J., & Gubbins, D. (2004). The influence of potassium on core and geodynamo evolution. Geophysical Journal International, 156, 363–376.

    Article  Google Scholar 

  • O’Neill, C., & Debaille, V. (2014). The evolution of Hadean-Eoarchaean geodynamics. Earth and Planetary Science Letters, 406, 49–58.

    Article  Google Scholar 

  • O’Neill, C., & Lenardic, A. (2007). Geological consequences of super-sized Earths. Geophysical Research Letters, 34. https://doi.org/10.1029/2007gl030598.

  • O’Rourke, J. G., & Stevenson, D. J. (2016). Powering Earth’s dynamo with magnesium precipitation from the core. Nature, 529, 387–389.

    Google Scholar 

  • Oparin, A. I. (1957). The origin of life on the Earth. London: Oliver and Boyd.

    Google Scholar 

  • Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., et al. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224.

    Article  Google Scholar 

  • Piro, A. L. (2018). Exoplanets torqued by the combined tides of a moon and parent star. Astronomical Journal, 156, 54, 10 pp.

    Google Scholar 

  • Planavsky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., et al. (2010). The evolution of the marine phosphate reservoir. Nature, 467, 1088–1090.

    Article  Google Scholar 

  • Podolak, M., & Zucker, S. (2004). A note on the snow line in protostellar accretion disks. Meteoritics & Planetary Science, 39, 1859–1868.

    Article  Google Scholar 

  • Pozzo, M., Davies, C., Gubbins, D., & Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355–358.

    Article  Google Scholar 

  • Ratner, M. I., & Walker, J. C. (1972). Atmospheric ozone and the history of life. Journal of the Atmospheric Sciences, 29, 803–808.

    Article  Google Scholar 

  • Raymond, S. N., Armitage, P. J., Moro-Martín, A., Booth, M., Wyatt, M. C., Armstrong, J. C., et al. (2011). Debris disks as signposts of terrestrial planet formation. Astronomy & Astrophysics, 530(A62), 1–23.

    Google Scholar 

  • Righter, K., & Drake, M. J. (1999). Effect of water on metal-silicate partitioning of siderophile elements a high pressure and temperature terrestrial magma ocean and core formation. Earth and Planetary Science Letters, 171, 383–399.

    Article  Google Scholar 

  • Ringwood, A. E. (1962). A model for the upper mantle. Journal of Geophysical Research, 67, 857–867.

    Article  Google Scholar 

  • Ringwood, A. E. (1989). Significance of the terrestrial Mg/Si ratio. Earth and Planetary Science Letters, 95, 1–7.

    Article  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64.

    Google Scholar 

  • Sagan, C., & Drake, F. (1975). The search for extraterrestrial intelligence. Scientific American, 232, 80–89.

    Article  Google Scholar 

  • Schopf, J. W. (Ed.). (2002). Life’s origin: The beginnings of biological evolution. University of California Press.

    Google Scholar 

  • Sclater, J., Jaupart, C., & Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics, 18, 269–311.

    Article  Google Scholar 

  • Shock, E., & Canovas, P. (2010). The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids, 10, 61–192.

    Google Scholar 

  • Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. Journal of Geophysical Research, 105, 17563–17578.

    Article  Google Scholar 

  • Sleep, N. H., & Zahnle, K. (1998). Refugia from asteroid impacts on early Mars and the early Earth. Journal of Geophysical Research, 103, 28529–28544.

    Article  Google Scholar 

  • Sleep, N. H., Zahnle, K. J., Kasting, J. F., & Morowitz, H. J. (1989). Annihilation of ecosystems by large asteroid impacts on the early earth. Nature, 342, 139–142.

    Article  Google Scholar 

  • Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Physics of the Earth and Planetary Interiors, 19, 168–182.

    Article  Google Scholar 

  • Spiegel, D. S., & Turner, E. L. (2012). Bayesian analysis of the astrobiological implications of life’s early emergence on Earth. Proceedings of the National Academy of Sciences, 109, 395–400.

    Article  Google Scholar 

  • Stern, R. J. (2016). Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7, 573–580.

    Article  Google Scholar 

  • Tang, F., Taylor, R. J. M., Einsle, J. F., Borlina, C. S., Fu, R. R., Weiss, B. P., Williams, H. M., Williams, W., Nagy, L., Midgley, P., Lima, E. A., Bell, E. A., Harrison, T. M., & Harrison, R. (2019). Secondary magnetite in ancient zircon precludes analysis of a Hadean-Paleoarchean geodynamo. Proceedings of the National Academy of Sciences, 116, 407–412.

    Google Scholar 

  • Tarduno, J. A., Blackman, E. G., & Mamajek, E. E. (2014). Detecting the oldest geodynamo and attendant shielding from the solar wind: Implications for habitability. Physics of the Earth and Planetary Interiors, 233, 68–87.

    Article  Google Scholar 

  • Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., & Bono, R. K. (2015). A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349, 521–524.

    Article  Google Scholar 

  • Tipler, F. J. (1981). A brief history of the extraterrestrial intelligence concept. Quarterly Journal of the Royal Astronomical Society, 22, 133–145.

    Google Scholar 

  • Todd, V. R., Shaw, S. E., & Hammarstrom, J. M. (2003). Cretaceous plutons of the Peninsular Ranges batholith, San Diego and westernmost Imperial Counties, California: Intrusion across a Late Jurassic continental margin. Geological Society of America Special Paper, 374, 185–235.

    Google Scholar 

  • Trail, D., Buettner, J., Chowdhury, W., Bell, E. A., & Liu, M.-C. (2017). Decoding old zircons. In Before life: The chemical, geological and dynamical setting for the emergence of an RNA world (pp. 29–30). Workshop, Boulder, CO, October 9–12.

    Google Scholar 

  • Trail, D., Watson, E. B., & Tailby, N. D. (2011). The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480(7375), 79–82.

    Google Scholar 

  • Turcotte, D. L. (1993). An episodic hypothesis for Venusian tectonics. Journal of Geophysical Research: Planets, 98, 17061–17068.

    Article  Google Scholar 

  • Urey, H. C. (1952). The planets: Their origin and development (p. 245). New Haven: Yale University Press.

    Google Scholar 

  • Valencia, D., & O’Connell, R. J. (2009). Convection scaling and subduction on Earth and super-Earths. Earth and Planetary Science Letters, 286, 492–502.

    Article  Google Scholar 

  • Valencia, D., O’Connell, R. J., & Sasselov, D. D. (2007). Inevitability of plate tectonics on super-Earths. The Astrophysical Journal Letters, 670, L45.

    Article  Google Scholar 

  • Van Heck, H. J., & Tackley, P. J. (2011). Plate tectonics on super-Earths: Equally or more likely than on Earth. Earth and Planetary Science Letters, 310, 252–261.

    Article  Google Scholar 

  • Vidotto, A. A., Jardine, M., Morin, J., Donati, J. F., Lang, P., & Russell, A. J. B. (2013). Effects of M dwarf magnetic fields on potentially habitable planets. Astronomy & Astrophysics, 557, A67 (11 pp.).

    Google Scholar 

  • Wächtershäuser, G. (1990). Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, 87, 200–204.

    Article  Google Scholar 

  • Waltham, J. (2014). Lucky planet (p. 198). New York, NY: Basic Books (Perseus).

    Google Scholar 

  • Ward, P. D., & Brownlee, D. (2000). Rare earth: Why complex life is uncommon in the universe. New York: Copernicus Books.

    Google Scholar 

  • Weiss, B. P., Maloof, A. C., Tailby, N., Ramezani, J., Fu, R. R., Hanus, V., et al. (2015). Pervasive remagnetization of detrital zircon host rocks in the Jack Hills Western Australia and implications for records of the early geodynamo. Earth and Planetary Science Letters, 430, 115–128.

    Article  Google Scholar 

  • Weiss, B. P., Maloof, A. C., Harrison, T. M., Swanson-Hysell, N. L., Fu, R. R., Kirschvink, J. L., et al. (2016). Reply to comment on “Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early dynamo”. Earth and Planetary Science Letters, 450, 409–412.

    Article  Google Scholar 

  • Weiss, B. P., Fu, R. R., Einsle, J. F., Glenn, D. R., Kehayias, P., Bell, E. A., et al. (2018). Secondary magnetic inclusions in detrital zircons from the Jack Hills, Western Australia, and implications for the origin of the geodynamo. Geology, 46, 427–430.

    Article  Google Scholar 

  • Wetherill, G. W. (1980). Formation of the terrestrial planets. Annual Review of Astronomy and Astrophysics, 18, 77–113.

    Article  Google Scholar 

  • Wetherill, G. W. (1985). Asteroidal source of ordinary chondrites. Meteoritics, 20, 1–22.

    Article  Google Scholar 

  • Wetherill, G. W. (1994). Possible consequences of absence of “Jupiters “in planetary systems. In Planetary systems: Formation, evolution, and detection (pp. 23–32). Dordrecht: Springer.

    Google Scholar 

  • White, A. J. R., & Chappell, B. W. (1977). Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7–22.

    Article  Google Scholar 

  • Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87, 4576–4579.

    Article  Google Scholar 

  • Woo, J. M. Y., Brasser, R., Matsumura, S., Mojzsis, S. J., & Ida, S. (2018). The curious case of Mars’ formation. Astronomy & Astrophysics, 617, A17.

    Article  Google Scholar 

  • Zeebe, R. E. (2012). History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Review of Earth and Planetary Sciences, 40, 141–165.

    Article  Google Scholar 

  • Zharkov, V. N. (2000). On the history of the lunar orbit. Solar System Research, 34, 1–11.

    Google Scholar 

  • Ziegler, L. B., & Stegman, D. R. (2013). Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochemistry, Geophysics, Geosystems, 14, 4735–4742.

    Article  Google Scholar 

  • Zuluaga, J. I., Bustamante, S., Cuartas, P. A., & Hoyos, J. H. (2013). The influence of thermal evolution in the magnetic protection of terrestrial planets. The Astrophysical Journal, 770, 23 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Could the Hadean Eon Have Been Habitable?. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_10

Download citation

Publish with us

Policies and ethics