Skip to main content

Why Hadean?

  • Chapter
  • First Online:
Hadean Earth

Abstract

The development of the geologic timescale arose from early nineteenth century fossil correlations and thus firmly rooted in the rock record. The thinking of that time included the possibility that our planet had forever existed in a quasi-steady state. By the later part of that century, it was broadly understood that Earth must have experienced a discrete origin but that details of that event might never be discerned. The advent of radiometric dating shortly thereafter catapulted this discussion from considering upper bounds of tens of millions of years to several billions. But it was the return of lunar highland rocks in the early 1970s that revolutionized thinking about the early inner solar system, including a hypothesized impact bombardment at ca. 3.9 billion years that was thought to have obliterated planetary surfaces. It was in this context that the term “Hadean” was proposed as the earliest division of geologic time. Since then, the meaning of Hadean evolved to describe the first roughly 500 million years of Earth history, which currently coincides with the period for which we have no macroscopic rock record. The premise of this book is that there are four avenues available to seek the nature of this eon of Earth history: (1) the presumption that physical laws are time dependent, and thus limits can be placed on early Earth’s behavior using mathematical calculations; (2) that isotopic variations resulting from long-lived and extinct radioactivities preserved in mantle rocks can constrain the timing of early, planetary-scale differentiation; (3) that as much as half the rocks on the lunar surface are likely between 4.4 and 3.9 billion years in age and thus can attest to conditions then extant in the inner solar system; and (4) that detrital zircons between 4.0 and nearly 4.4 billion years preserve a lithic record of terrestrial activity in that period. Although the initial choice of the word Hadean was meant in infer that this phase of Earth history was characterized by hellish surface conditions, in classic mythology it was a cool and watery realm. Studies of these ancient zircons over the past 20 years appear to reveal an early history more akin to the latter myth than the former.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Possibly excepting the Pirahã (Nevins et al. 2009).

  2. 2.

    http://news.gallup.com/poll/1942/substantial-numbers-americans-continue-doubt-evolution-explan.aspx; http://news.gallup.com/poll/21814/evolution-creationism-intelligent-design.aspx.

  3. 3.

    Zircon (ZrSiO4) is an accessory mineral amenable to precise U-Pb dating that is highly refractory in igneous, sedimentary and metamorphic environments.

  4. 4.

    Chondrites are primitive stony meteorites containing chondrules that have not experienced significant differentiation and thus broadly represent material condensed from the solar nebula.

  5. 5.

    A reservoir is a chemically and isotopically homogeneous and isolated mass (e.g., atmosphere, hydrosphere, undepleted mantle, etc.) that can exchange with other geochemically distinct storages.

  6. 6.

    then the oldest reliably known rock forming ages.

  7. 7.

    http://www.stratigraphy.org/images/Archive/ICS_SubcommReport2014.pdf.

  8. 8.

    http://www.stratigraphy.org/ICSchart/ChronostratChart2017-02.pdf.

  9. 9.

    This phenomenon has a long tradition. For example, in 1948 George Gamow wrote: “…modern geology arrives at a rather detailed picture of the solidification times of different parts of the Earth’s crust. The general result of this survey reveals an important fact: no rock exhibits an age of more than two billion years from which we must conclude that the solid crust of the Earth was formed from previously molten matter not more than about two billion years ago” (Gamow 1948).

  10. 10.

    Notwithstanding the dozen or so references to gehenna, a non-specific destination for the wicked, and the multiple references in Revelations to fiery torments (14:10–11, 20:10,14,15; 21:8) in unspecified locations.

  11. 11.

    From the ingrowth of daughter 206Pb and 207Pb from the radioactive decay of parent 238U and 235U, respectively.

  12. 12.

    Occam’s razor is the philosophical view that parsimonious explanations are preferable to complex ones because they are more easily falsifiable.

References

  • Abe, Y. (1993). Physical state of the very early earth. Lithos, 30, 223–235.

    Article  Google Scholar 

  • Abe, Y. (2007). Behavior of water during terrestrial planet formation. Geochimica et Cosmochimica Acta Suppl, 71, A2.

    Article  Google Scholar 

  • Allègre, C. J., Manhès, G., & Göpel, C. (2008). The major differentiation of the earth at ~4.45 Ga. Earth and Planetary Science Letters, 267, 386–398.

    Article  Google Scholar 

  • Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C. H., Ireland, T. R., Petaev, M., et al. (2010). U-Pb chronology of the solar system’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343–350.

    Google Scholar 

  • Armstrong, R. L. (1981). Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth earth. Philosophical Transactions of the Royal Society London Ser. A, 301, 443–471.

    Article  Google Scholar 

  • Armstrong, R. L. (1991). The persistent myth of crustal growth. Australian Journal of Earth Science, 38, 613–630.

    Article  Google Scholar 

  • Barboni, M., Boehnke, P., Keller, B., Kohl, I.E., Schoene, B., Young, E. D., & McKeegan, K.D. (2017). Early formation of the moon 4.51 billion years ago. Science Advances, 3, e1602365.

    Google Scholar 

  • Bell, E.A., Boehnke, P., Harrison, T.M., and Mao, W. (2015). Potentially biogenic carbon preserved in a 4.1 Ga zircon. Proceedings of the National Academy of Sciences, 112, 14518–14521.

    Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Wielicki, M. M. (2018). Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477, 151–160.

    Article  Google Scholar 

  • Berkman, M., & Plutzer, E. (2010). Evolution, creationism, and the battle to control America’s classrooms.

    Google Scholar 

  • Bickle, M. J. (1986). Implications of melting for stabilisation of the lithosphere and heat loss in the Archean. Earth and Planetary Science Letters, 80, 314–324.

    Article  Google Scholar 

  • Bleeker, W. (2004a). Taking the pulse of planet earth: A proposal for a new multi-disciplinary flagship project in Canadian solid earth sciences. Geoscience Canada, 31, 179–190.

    Google Scholar 

  • Bleeker, W. (2004b). Towards a ‘natural’ time scale for the Precambrian—A proposal. Lethaia, 37, 219–222.

    Article  Google Scholar 

  • Boehnke, P., Harrison, T. M., Heizler, M. T., & Warren, P. H. (2016). A model for meteoritic and lunar 40Ar/39 Ar age spectra: Addressing the conundrum of multi-activation energies. Earth and Planetary Science Letters, 453, 267–275.

    Article  Google Scholar 

  • Boltwood, B. (1907). On the ultimate disintegration products of the radioactive elements. Part II. The disintegration products of uranium. American Journal of Science, 4, 77–80.

    Google Scholar 

  • Bouvier, A., & Wadhwa, M. (2010). The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637.

    Article  Google Scholar 

  • Bowring, S. A., & Williams, I. S. (1999). Priscoan (4.00–4.02 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology, 134, 3–16.

    Article  Google Scholar 

  • Canup, R. M. (2004). Simulations of a late lunar forming impact. Icarus, 168, 433–456.

    Article  Google Scholar 

  • Christensen, U. R. (1985). Thermal evolution models for the earth. Journal of Geophysical Research: Solid Earth, 90, 2995–3007.

    Article  Google Scholar 

  • Clausius, R. (1850). On the motive power of heat, and on the laws which can be deduced from it for the theory of heat. LXXIX (Dover Reprint): Poggendorff’s Annalen der Physick.

    Google Scholar 

  • Cloud, P. (1972). A working model of the primitive Earth. American Journal of Science, 272, 537–548.

    Article  Google Scholar 

  • Cloud, P. (1976). Major features of crustal evolution. De Toit Lecture, Geological Society of South Africa, 79, 1–33.

    Google Scholar 

  • Cowie, J. W., Ziegler, W., Boucot, A. J., Basset, M.G. & Remane, J. (1986). Guidelines and Statues of the International Commission on-Stratigraphy (ICS). Cour. Forsch.-lnst. Senckenberg, 83, 1–14.

    Google Scholar 

  • Craig, H., & Lupton, J. E. (1976). Primoridial neon, helium, and hydrogen in oceanic basalts. Earth and Planetary Science Letters, 32, 369–385.

    Article  Google Scholar 

  • Cuvier, G., & Brongniart, A. (1811). Essai sur la géographie minéralogique des environs de Paris: avec une carte géognostique, et des coupes de terrain. Baudouin.

    Google Scholar 

  • Davies, G. F. (1980). Thermal histories of convective earth models and constraints on radiogenic heat production in the earth. Journal of Geophysical Research: Solid Earth, 85, 2517–2530.

    Article  Google Scholar 

  • Dawkins, R. (2007). The god delusion. Random House.

    Google Scholar 

  • Dundes, A. (1962). Earth-Diver: Creation of the mythopoeic male. American Anthropologist, 64, 1032–1051.

    Article  Google Scholar 

  • Elkins-Tanton, L. T. (2008). Linked magma ocean solidification and atmospheric growth for earth and mars. Earth and Planetary Science Letters, 271, 181–191.

    Article  Google Scholar 

  • Elkins-Tanton, L. T., Parmentier, E. M., & Hess, P. C. (2007). The effects of magma ocean depth and initial composition on planetary differentiation. In Lunar and Planetary Science Conference (pp. XXXVIII).

    Google Scholar 

  • Ellenberger, F. (1999). The first international geological congress, Paris, 1878. Episodes, 22, 113–117.

    Article  Google Scholar 

  • Ernst, W. G. (1983). The early earth and the Archean rock record. In Earth’s earliest biosphere: Its origin and evolution (pp. 41–52). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Fyfe, W. S. (1978). The evolution of the earth’s crust: Modern plate tectonics to ancient hot spot tectonics? Chemical Geology, 23, 89–114.

    Article  Google Scholar 

  • Gamow, G. A. (1948). Biography of the earth: Its past, present and future (p. 194). Mentor Books.

    Google Scholar 

  • Genda, H., & Abe, Y. (2005). Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature, 433, 842–844.

    Article  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., & Lourens, L. J. (2004). A new geologic time scale, with special reference to Precambrian and Neogene. Episodes, 27, 83–100.

    Article  Google Scholar 

  • Halliday, A. N. (2008). Earth viewed from a late moon. Geochimica et Cosmochimica Acta Suppl, 72, A344.

    Google Scholar 

  • Hamilton, W. B. (1998). Archean magmatism and deformation were not products of plate tectonics. Precambrian Research, 91, 143–179.

    Article  Google Scholar 

  • Harland, W. B. (1975). The two geological time scales. Nature, 253, 505.

    Article  Google Scholar 

  • Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G., & Walters, R. (1982). A geologic time scale (p. 131). Cambridge University Press.

    Google Scholar 

  • Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., & Smith, D. G. (1990). A geologic time scale 1989. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harrison, T. M., Schmitt, A. K., McCulloch, M. T., & Lovera, O. M. (2008). Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters, 268, 476–486.

    Article  Google Scholar 

  • Harrison, T. M., Bell, E. A., & Boehnke, P. (2017). Hadean zircon petrochronology. Reviews in Mineralogy and Geochemistry, 83, 329–363.

    Article  Google Scholar 

  • Hazen, R. M. (2013). Paleomineralogy of the Hadean Eon: A preliminary species list. American Journal of Science, 313, 807–843.

    Article  Google Scholar 

  • Holden, P., Lanc, P., Ireland, T. R., Harrison, T. M., Foster, J. J., & Bruce, Z. P. (2009). Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100 000 grains. International Journal of Mass Spectrometry, 286, 53–63.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from >4 Ga zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.

    Article  Google Scholar 

  • Hume, D. (1738). A treatise of human nature (p. 368). London: John Noon.

    Google Scholar 

  • Hutton, J. (1788). Theory of the earth; or an investigation of the land observable in the composition, dissolution and restoration of land upon the globe. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1, 209–304.

    Google Scholar 

  • Jacobsen, S. (2005). The Hf-W isotopic system and the origin of the earth and moon. Annual Review of Earth and Planetary Sciences, 33, 531–570.

    Article  Google Scholar 

  • Korenaga, J. (2006). Archean geodynamics and the thermal evolution of Earth. In K. Benn, J.-C. Mareschal, K. Condie (Eds.), AGU Geophysical Monograph Series: Vol. 164. Archean geodynamics and environments (pp. 7–32).

    Google Scholar 

  • Korenaga, J. (2008). Urey ratio and the structure and evolution of earth’s mantle. Reviews of Geophysics, 46, RG2007. https://doi.org/10.1029/2007RG000241.

  • Krot, A. N., Amelin, Y., Cassen, P., & Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989–992.

    Article  Google Scholar 

  • Lee, D., & Halliday, A. (1995). Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature, 378, 771–774.

    Article  Google Scholar 

  • Leeming, D. A. (2010). Creation myths of the world: An encyclopedia (in two volumes). ABC-CLIO Inc., p. 553.

    Google Scholar 

  • Lunine, J. I. (1999). Earth: Evolution of a habitable world. Cambridge University Press.

    Google Scholar 

  • Lunine, J. I., O’Brien, D. P., Raymond, S. N., Morbidelli, A., Qinn, T., & Graps, A. L. (2011). Dynamical models of terrestrial planet formation. Advanced Science Letters, 4, 325–338.

    Article  Google Scholar 

  • Lyell, C. (1830). Principles of geology (Vol. 1). Murray.

    Google Scholar 

  • Lyell, C. (1837) Principles of geology: being an inquiry how far the former changes of the earth’s surface are referable to causes now in operation (Vol. 1). J. Kay, jun. and brother.

    Google Scholar 

  • Maher, K. A., & Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.

    Article  Google Scholar 

  • Mann, A. (2018). Bashing holes in the tale of earth’s troubled youth. Nature, 553, 393–395.

    Article  Google Scholar 

  • McKenzie, D. P., & Weiss, N. (1975). Speculation on the thermal and tectonic history of the earth. Geophysical Journal International, 42, 131–174.

    Article  Google Scholar 

  • Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., et al. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331, 176–182.

    Article  Google Scholar 

  • Mojzsis, S. J., Harrison, T. M., & Pidgeon, R. T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the earth’s surface 4300 Myr ago. Nature, 409, 178–181.

    Article  Google Scholar 

  • Moorbath, S. (2005). Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaean transition. Applied Geochemistry, 20, 819–824.

    Article  Google Scholar 

  • Moorbath, S., O’Nions, R. K., & Pankhurst, R. J. (1973). Early Archaean age for the Isua iron formation, West Greenland. Nature, 245, 138–146.

    Article  Google Scholar 

  • Nevins, A., Pesetsky, D., & Rodrigues, C. (2009). Pirahã exceptionality: A reassessment. Language, 85, 355–404.

    Article  Google Scholar 

  • O’Neil, J., Carlson, R. W., Francis, D., & Stevenson, R. K. (2008). Neodymium-142 evidence for Hadean mafic crust. Science, 321, 1828–1831.

    Article  Google Scholar 

  • Ogle, N. (1839). Mariamne, the last of the Asmonean Princesses: A historical novel of Palestine. James Fraser.

    Google Scholar 

  • Pahlevan, K., & Stevenson, D. J. (2007). Equilibration in the aftermath of the lunar-forming giant impact. Earth and Planetary Science Letters, 262, 438–449.

    Article  Google Scholar 

  • Patterson, C., Tilton, G., & Inghram, M. (1955). Age of the earth. Science, 121, 69–75.

    Article  Google Scholar 

  • Phillips, J. (1841). Figures and descriptions of the Palaeozoic Fossils of Cornwall, Devon and West Somerset. Longman Brown.

    Google Scholar 

  • Pidgeon, R. T. (1978). Big Stubby and the early history of the earth. U.S. Geological Survey Open File Report, 78–701, 334–335.

    Google Scholar 

  • Reimink, J. R., Davies, J. H. F. L., Chacko, T., Stern, R. A., Heaman, L. M., Sarkar, C., et al. (2016). No evidence for Hadean continental crust within earth’s oldest evolved rock unit. Nature Geoscience, 9, 777–780. https://doi.org/10.1038/ngeo2786.

    Article  Google Scholar 

  • Render, J., Fischer-Gödde, M., Burkhardt, C., & Kleine, T. (2017). The cosmic molybdenum-neodymium isotope correlation and the building material of the earth. Geochemical Perspective Letters, 3, 170–178.

    Article  Google Scholar 

  • Righter, K., & Drake, M. J. (1999). Effect of water on metal-silicate partitioning of siderophile elements a high pressure and temperature terrestrial magma ocean and core formation. Earth and Planetary Science Letters, 171, 383–399.

    Article  Google Scholar 

  • Rooth, A. B. (1957). The creation myths of the North American Indians. Anthropos, 52, 497–508.

    Google Scholar 

  • Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C., & Righter, K. (2003). Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth and Planetary Science Letters, 205, 239–255.

    Article  Google Scholar 

  • Sadler, D. H. (1957). 4. Commission des Ephemerides. Transactions of the International Astronomical Union, 9, 80–84.

    Article  Google Scholar 

  • Scriblerus, S. (1731). Whistoneutes: Or, Remarks on Mr. Whiston’s Historical Memoirs of the Life of Dr. Samuel Clarke, &c. By a person of retirement and obscurity; But of the Antique Ffamily of the Scriblerians. Printed for T. Warner, at the Black-Boy in Pater-Noster-Row, London.

    Google Scholar 

  • Smith, W. (1815). A memoir to the map and delineation of the Strata of England and wales with part of Scotland. John Cary.

    Google Scholar 

  • Smith, J. V. (1981). The first 800 million years of earths history. Philosophical Transactions of the Royal Society London Ser. A, 301, 401–422.

    Article  Google Scholar 

  • Smith, E. and Morowitz, H.J. (2016) The origin and nature of life on earth: the emergence of the fourth geosphere. Cambridge University Press.

    Google Scholar 

  • Solomatov, V. S. (2000). Fluid dynamics of a terrestrial magma ocean. In R. Canup & K. Righter (Eds.), Origin of the earth and moon (pp. 323–338). Tucson, TUS: Univ. Ariz. Press.

    Google Scholar 

  • Solomatov, V. S. (2007). Magma oceans and primordial mantle differentiation. In G. Schubert (Ed.), Treatise on geophysics 9 (pp. 91–120). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Solomon, S. C. (1980). Differentiation of crusts and cores of the terrestrial planets: Lessons for the early earth? Precambrian Research, 10, 177–194.

    Article  Google Scholar 

  • Spudis, P. D., Wilhelms, D. E., & Robinson, M. S. (2011). The sculptured hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the moon. Journal of Geophysical Research: Planets, 116, E12.

    Article  Google Scholar 

  • Stern, R. A., & Bleeker, W. (1998). Age of the world’s oldest rocks refined using Canada’s SHRIMP the Acasta gneiss complex Northwest territories Canada. Geoscience Canada, 25, 27–31.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Thomson, W. (1863). On the secular cooling of the earth. Philosophical Magazine Ser, 4(25), 1–14.

    Google Scholar 

  • Touboul, M., Kleine, T., Bourdon, B., Palme, H., & Wieler, R. (2007). Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 450, 1206–1209.

    Article  Google Scholar 

  • Tozer, D.C. (1972). The present thermal state of the terrestrial planets. Physics of the Earth and Planetary Interiors, 6(1–3),182–197.

    Google Scholar 

  • Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics (p. 412). Cambridge University Press.

    Google Scholar 

  • Urey, H. C. (1955). The cosmic abundances of potassium, uranium, and thorium and the heat balances of the earth, the moon, and mars. Proceedings of the National Academy of Sciences of the United States of America, 41, 127–144.

    Article  Google Scholar 

  • Van Kranendonk, M. J., Altermann, W., Beard, B. L., Hoffman, P. F., Johnson, C. M., Kasting, J. F., Melezhik, V. A., Nutman, A. P., & Papineau, D., Pirajno, F. (2012). A chronostratigraphic division of the Precambrian: possibilities and challenges. In F. M. Gradstein et al. (Eds.), The geologic time scale (pp. 299–392). Elsevier.

    Google Scholar 

  • Waltham, J. (2014). Lucky planet (p. 198). New York, NY: Basic Books (Perseus).

    Google Scholar 

  • Ward, P. D., & Brownlee, D. (2000). Rare earth: Why complex life is uncommon in the universe. New York: Copernicus Books.

    Google Scholar 

  • Wetherill, G. W. (1972). The beginning of continental evolution. Tectonophysics, 13, 13–45.

    Article  Google Scholar 

  • Wiechert, U., Halliday, A. N., Lee, D. C., Snyder, G. A., Taylor, L. A., & Rumble, D. (2001). Oxygen isotopes and the moon-forming giant impact. Science, 294, 345–348.

    Article  Google Scholar 

  • Wilde, S. A., Valley, J. W., Peck, W. H., & Graham, C. M. (2001). Evidence form detrital zircons for the existence of continental crust and oceans 4.4 Ga ago. Nature, 409, 175–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Why Hadean?. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_1

Download citation

Publish with us

Policies and ethics