Skip to main content

Multimodal Brain Tumor Segmentation and Survival Prediction Using Hybrid Machine Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Abstract

In this paper, we propose a UNet-VAE deep neural network architecture for brain tumor segmentation and survival prediction. UNet-VAE architecture has shown great success in brain tumor segmentation in the multimodal brain tumor segmentation (BraTS) 2018 challenge. In this work, we utilize the UNet-VAE to extract high dimension features, then fuse with hand-crafted texture features to perform survival prediction. We apply the proposed method to the BraTS 2019 validation dataset for both tumor segmentation and survival prediction. The tumor segmentation result shows dice score coefficient (DSC) of 0.759, 0.90, and 0.806 for enhancing tumor (ET), whole tumor (WT), and tumor core (TC), respectively. For the feature fusion-based survival prediction method, we achieve 56.4% classification accuracy with mean square error (MSE) 101577, and 51.7% accuracy with MSE 70590 for training and validation, respectively. In testing phase, the proposed method for tumor segmentation achieves average DSC of 0.81328, 0.88616, and 0.84084 for ET, WT, and TC, respectively. Moreover, the model offers accuracy of 0.439 with MSE of 449009.135 for overall survival prediction in testing phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ostrom, Q.T., Gittleman, H., Truitt, G., Boscia, A., Kruchko, C., Barnholtz-Sloan, J.S.: CBTRUS statistical report primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-oncology. 20 suppl. 4, iv1–iv86 (2018)

    Article  Google Scholar 

  2. Bakas, S. et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. data 4, 170117 (2017)

    Article  Google Scholar 

  4. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  5. Mustaqeem, A., Javed, A., Fatima, T.: An efficient brain tumor detection algorithm using watershed & thresholding based segmentation. Int. J. Image Graph. Signal Process. 4(10), 34 (2012)

    Article  Google Scholar 

  6. Pei, L., Bakas, S., Vossough, A., Reza, S.M., Davatzikos, C., Iftekharuddin, K.M.: Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomed. Signal Process. Control 55, 101648 (2020)

    Article  Google Scholar 

  7. Pei, L., Reza, S.M., Li, W., Davatzikos, C., Iftekharuddin, K.M.: Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 101342L. International Society for Optics and Photonics (2017)

    Google Scholar 

  8. Pei, L., Reza, S.M., Iftekharuddin, K.M.: Improved brain tumor growth prediction and segmentation in longitudinal brain MRI. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 421–424. IEEE (2015)

    Google Scholar 

  9. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  10. Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: null, p. 10532. Citeseer (2002)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)

    Article  Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  13. Mohsen, H., El-Dahshan, E.-S.A., El-Horbaty, E.-S.M., Salem, A.-B.M.: Classification using deep learning neural networks for brain tumors. Future Comput. Inform. J. 3(1), 68–71 (2018)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Shboul, Z.A., Alam, M., Vidyaratne, L., Pei, L., Elbakary, M.I., Iftekharuddin, K.M.: Feature-guided deep radiomics for glioblastoma patient survival prediction (in English). Front. Neurosci. 13(966) (2019). Original Research

    Google Scholar 

  17. Bakas, S. et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)

    Google Scholar 

  18. Bakas, S. et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive, vol. 286 (2017)

    Google Scholar 

  19. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgements

This work was partially funded through NIH/NIBIB grant under award number R01EB020683. This work is also partially supported in part by NSF under grant CNS-1828593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monibor Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pei, L., Vidyaratne, L., Monibor Rahman, M., Shboul, Z.A., Iftekharuddin, K.M. (2020). Multimodal Brain Tumor Segmentation and Survival Prediction Using Hybrid Machine Learning. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics