Skip to main content

Automatic Brain Tumour Segmentation and Biophysics-Guided Survival Prediction

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Included in the following conference series:

Abstract

Gliomas are the most common malignant brain tumours with intrinsic heterogeneity. Accurate segmentation of gliomas and their sub-regions on multi-parametric magnetic resonance images (mpMRI) is of great clinical importance, which defines tumour size, shape and appearance and provides abundant information for preoperative diagnosis, treatment planning and survival prediction. Recent developments on deep learning have significantly improved the performance of automated medical image segmentation. In this paper, we compare several state-of-the-art convolutional neural network models for brain tumour image segmentation. Based on the ensembled segmentation, we present a biophysics-guided prognostic model for patient overall survival prediction which outperforms a data-driven radiomics approach. Our method won the second place of the MICCAI 2019 BraTS Challenge for the overall survival prediction.

S. Wang and C. Dai—The two authors contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive (2017)

    Google Scholar 

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive 286/2017 (2017)

    Google Scholar 

  3. Bakas, S.: Advancing the cancer genome atlas Glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BraTS Challenge. arXiv:1811.02629 (2018)

  5. Baldock, A.L., Ahn, S., Rockne, R., Johnston, S., Neal, M., et al.: Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One 9(10), e99057 (2014)

    Article  Google Scholar 

  6. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  7. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  8. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)

    Article  Google Scholar 

  9. Li, C., Wang, S., Liu, P., Torheim, T., Boonzaier, N.R., et al.: Decoding the interdependence of multiparametric magnetic resonance imaging to reveal patient subgroups correlated with survivals. Neoplasia 21(5), 442–449 (2019)

    Article  Google Scholar 

  10. Li, C., Wang, S., Serra, A., Torheim, T., Yan, J.L., et al.: Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma. Eur. Radiol. 29, 1–12 (2019)

    Article  Google Scholar 

  11. Li, C., et al.: Intratumoral heterogeneity of glioblastoma infiltration revealed by joint histogram analysis of diffusion tensor imaging. Neurosurgery 85, 524–534 (2018)

    Article  Google Scholar 

  12. Li, C., Wang, S., Yan, J.L., Torheim, T., Boonzaier, N.R., et al.: Characterizing tumor invasiveness of glioblastoma using multiparametric magnetic resonance imaging. J. Neurosurg. 1, 1–8 (2019)

    Google Scholar 

  13. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  14. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  15. Ricard, D., Idbaih, A., Ducray, F., Lahutte, M., Hoang-Xuan, K., Delattre, J.Y.: Primary brain tumours in adults. Lancet 379(9830), 1984–1996 (2012)

    Article  Google Scholar 

  16. Scialpi, M., Bianconi, F., Cantisani, V., Palumbo, B.: Radiomic machine learning: is it really a useful method for the characterization of prostate cancer? Radiology 291(1), 269 (2019)

    Article  Google Scholar 

  17. van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  18. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  19. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  20. Wu, C., Zou, Y., Zhan, J.: DA-U-Net: densely connected convolutional networks and decoder with attention gate for retinal vessel segmentation. In: IOP Conference Series: Materials Science and Engineering, vol. 533, p. 012053. IOP Publishing (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the SmartHeart EPSRC Programme Grant (EP/P001009/1) and the NIHR Imperial Biomedical Research Centre (BRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Dai, C., Mo, Y., Angelini, E., Guo, Y., Bai, W. (2020). Automatic Brain Tumour Segmentation and Biophysics-Guided Survival Prediction. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics