Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)
CrossRef
Google Scholar
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 1–13 (2017). https://doi.org/10.1038/sdata.2017.117
CrossRef
Google Scholar
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge (2018). CoRR abs/1811.02629. http://arxiv.org/abs/1811.02629
Bauer, S., Seiler, C., Bardyn, T., Buechler, P., Reyes, M.: Atlas-based segmentation of brain tumor images using a Markov random field-based tumor growth model and non-rigid registration. In: Proceedings of the IEEE EMBC, pp. 4080–4083 (2010). https://doi.org/10.1109/IEMBS.2010.5627302
Chander, A., Chatterjee, A., Siarry, P.: A new social and momentum component adaptive PSO algorithm for image segmentation. Exp. Syst. Appl. 38(5), 4998–5004 (2011)
CrossRef
Google Scholar
Fan, X., Yang, J., Zheng, Y., Cheng, L., Zhu, Y.: A novel unsupervised segmentation method for MR brain images based on fuzzy methods. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 160–169. Springer, Heidelberg (2005). https://doi.org/10.1007/11569541_17
CrossRef
Google Scholar
Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 57(2), 378–390 (2011)
CrossRef
Google Scholar
Ghafoorian, M., et al.: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities (2016). CoRR abs/1610.04834
Google Scholar
Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59
CrossRef
Google Scholar
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
CrossRef
Google Scholar
Ji, S., Wei, B., Yu, Z., Yang, G., Yin, Y.: A new multistage medical segmentation method based on superpixel and fuzzy clustering. Comp. Math. Meth. Med. 2014, 747549:1–747549:13 (2014)
MathSciNet
MATH
Google Scholar
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38
CrossRef
Google Scholar
Korfiatis, P., Kline, T.L., Erickson, B.J.: Automated segmentation of hyperintense regions in FLAIR MRI using deep learning. Tomography J. Imaging Res. 2(4), 334–340 (2016). https://doi.org/10.18383/j.tom.2016.00166
CrossRef
Google Scholar
Ladgham, A., Torkhani, G., Sakly, A., Mtibaa, A.: Modified support vector machines for MR brain images recognition. In: Proceedings of CoDIT, pp. 032–035 (2013). https://doi.org/10.1109/CoDIT.2013.6689515
Marcinkiewicz, M., Nalepa, J., Lorenzo, P.R., Dudzik, W., Mrukwa, G.: Segmenting brain tumors from MRI Using cascaded multi-modal U-Nets. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 13–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_2
CrossRef
Google Scholar
Mei, P.A., de Carvalho Carneiro, C., Fraser, S.J., Min, L.L., Reis, F.: Analysis of neoplastic lesions in magnetic resonance imaging using self-organizing maps. J. Neurol. Sci. 359(1–2), 78–83 (2015)
CrossRef
Google Scholar
Menze, et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J.N.L., Isgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans, Med. Imaging 35(5), 1252–1261 (2016). https://doi.org/10.1109/TMI.2016.2548501
CrossRef
Google Scholar
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
CrossRef
Google Scholar
Nalepa, J., Kawulok, M.: Adaptive genetic algorithm to select training data for support vector machines. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 514–525. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4_42
CrossRef
Google Scholar
Nalepa, J., Kawulok, M.: Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185, 113–132 (2016)
CrossRef
Google Scholar
Park, M.T.M., et al.: Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. NeuroImage 95, 217–231 (2014)
CrossRef
Google Scholar
Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M.L.D., Silva, C.A.: Brain tumour segmentation based on extremely rand. forest with high-level features. In: Proceedings of IEEE EMBC, pp. 3037–3040 (2015). https://doi.org/10.1109/EMBC.2015.7319032
Pipitone, J., et al.: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage 101, 494–512 (2014)
CrossRef
Google Scholar
Rajendran, A., Dhanasekaran, R.: Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: a combined approach. Procedia Eng. 30, 327–333 (2012). https://doi.org/10.1016/j.proeng.2012.01.868
CrossRef
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015). CoRR abs/1505.04597
Google Scholar
Saha, S., Bandyopadhyay, S.: MRI brain image segmentation by fuzzy symmetry based genetic clustering technique. In: Proceedings of IEEE CEC, pp. 4417–4424 (2007). https://doi.org/10.1109/CEC.2007.4425049
Sauwen, N., et al.: Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin. 12, 753–764 (2016)
CrossRef
Google Scholar
Sauwen, N., Acou, M., Sima, D.M., Veraart, J., Maes, F., Himmelreich, U., Achten, E., Huffel, S.V.: Semi-automated brain tumor segmentation on multi-parametric mri using regularized non-negative matrix factorization. BMC Med. Imaging 17(1), 29 (2017)
CrossRef
Google Scholar
Simi, V., Joseph, J.: Segmentation of glioblastoma multiforme from MR images - a comprehensive review. Egypt. J. Radiol. Nucl. Med. 46(4), 1105–1110 (2015)
CrossRef
Google Scholar
Soltaninejad, M., et al.: Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int. J. Comp. Assist. Radiol. Surg. 12(2), 183–203 (2017)
CrossRef
Google Scholar
Taherdangkoo, M., Bagheri, M.H., Yazdi, M., Andriole, K.P.: An effective method for segmentation of MR brain images using the ant colony optimization algorithm. J. Dig. Imaging 26(6), 1116–1123 (2013)
CrossRef
Google Scholar
Verma, N., Cowperthwaite, M.C., Markey, M.K.: Superpixels in brain MR image analysis. In: Proceedings of IEEE EMBC, pp. 1077–1080 (2013). https://doi.org/10.1109/EMBC.2013.6609691
Villanueva-Meyer, J.E., Mabray, M.C., Cha, S.: Current clinical brain tumor imaging. Neurosurgery 81(3), 397–415 (2017). https://doi.org/10.1093/neuros/nyx103
CrossRef
Google Scholar
Wu, W., Chen, A.Y.C., Zhao, L., Corso, J.J.: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int. J. Comput. Assist. Radiol. Surg. 9(2), 241–253 (2013). https://doi.org/10.1007/s11548-013-0922-7
CrossRef
Google Scholar
Zhao, J., Meng, Z., Wei, L., Sun, C., Zou, Q., Su, R.: Supervised brain tumor segmentation based on gradient and context-sensitive features. Front. Neurosci. 13, 144 (2019). https://doi.org/10.3389/fnins.2019.00144, https://www.frontiersin.org/article/10.3389/fnins.2019.00144
Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation (2017). CoRR abs/1702.04528
Google Scholar
Zhuge, Y., Krauze, A.V., Ning, H., Cheng, J.Y., Arora, B.C., Camphausen, K., Miller, R.W.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys., 1–10 (2017). https://doi.org/10.1002/mp.12481
Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46
CrossRef
Google Scholar