Skip to main content

Memory-Efficient Cascade 3D U-Net for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11992))

Included in the following conference series:

Abstract

Segmentation is a routine and crucial procedure for the treatment of brain tumors. Deep learning based brain tumor segmentation methods have achieved promising performance in recent years. However, to pursue high segmentation accuracy, most of them require too much memory and computation resources. Motivated by a recently proposed partially reversible U-Net architecture that pays more attention to memory footprint, we further present a novel Memory-Efficient Cascade 3D U-Net (MECU-Net) for brain tumor segmentation in this work, which can achieve comparable segmentation accuracy with less memory and computation consumption. More specifically, MECU-Net utilizes fewer down-sampling channels to reduce the utilization of memory and computation resources. To make up the accuracy loss, MECU-Net employs multi-scale feature fusion module to enhance the feature representation capability. Additionally, a light-weight cascade model, which resolves the problem of small target segmentation accuracy caused by model compression to some extent, is further introduced into the segmentation network. Finally, edge loss and weighted dice loss are combined to refine the brain tumor segmentation results. Experiment results on BraTS 2019 validation set illuminate that MECU-Net can achieve average Dice coefficients of 0.902, 0.824 and 0.777 on the whole tumor, tumor core and enhancing tumor, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng, H., et al.: Changing cancer survival in China during 2003–15: a pooled analysis of 17 populationbased cancer registries. Lancet Glob. Health 6(5), e555–e567 (2018)

    Article  Google Scholar 

  2. Pereira, S., et al.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  3. Urban, G., et al.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceedings of the Winning Contribution, MICCAI BraTS (Brain Tumor Segmentation) Challenge, pp. 31–35 (2014)

    Google Scholar 

  4. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). www.sciencedirect.com/science/article/pii/S1361841516301839

    Article  Google Scholar 

  5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. arXiv:180402967 (2018)

  9. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  10. Zhou, C., Ding, C., Lu, Z., Wang, X., Tao, D.: One-pass multi-task convolutional neural networks for efficient brain tumor segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 637–645. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_73

    Chapter  Google Scholar 

  11. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  12. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, arXiv preprint arXiv:1811.02629 (2018)

  13. Brügger, R., Baumgartner, C.F., Konukoglu, E.: A partially reversible U-Net for memory-efficient volumetric image segmentation. https://arxiv.org/abs/1906.06148

  14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  15. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: backpropagation without storing activations. In: Advances in Neural Information Processing Systems, vol. 30, pp. 2214–2224. Curran Associates, Inc. (2017)

    Google Scholar 

  16. Bakas, S., et al.: Advancing the Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  17. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  18. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61972062, the Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT_15R07, the National Key R&D Program of China under Grant 2018YFC0910506, the Natural Science Foundation of Liaoning Province under Grant 2019-MS-011, the Key R&D Program of Liaoning Province under Grant 2019JH2/10100030, the High-level Talent Innovation Support Program of Dalian City under Grant 2016RQ078 and the Liaoning BaiQianWan Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X., Jiang, Z., Sun, Q., Zhang, J. (2020). Memory-Efficient Cascade 3D U-Net for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46640-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46639-8

  • Online ISBN: 978-3-030-46640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics