Abstract
Process mining aims to bridge the gap between data science and process science by providing a variety of powerful data-driven analyses techniques on the basis of event data. These techniques encompass automatically discovering process models, detecting and predicting bottlenecks, and finding process deviations. In process mining, event data containing the full breadth of resource information allows for performance analysis and discovering social networks. On the other hand, event data are often highly sensitive, and when the data contain private information, privacy issues arise. Surprisingly, there has currently been little research toward security methods and encryption techniques for process mining. Therefore, in this paper, using abstraction, we propose an approach that allows us to hide confidential information in a controlled manner while ensuring that the desired process mining results can still be obtained. We show how our approach can support confidentiality while discovering control-flow and social networks. A connector method is applied as a technique for storing associations between events securely. We evaluate our approach by applying it on real-life event logs.
Keywords
- Responsible process mining
- Confidentiality
- Process discovery
- Directly follows graph
- Social network analysis
This is a preview of subscription content, access via your institution.
Buying options











Notes
- 1.
It has 11 relations with the resources “112”, “11000”, “11189”, “10913”, “10861”, “10909”, “11181”, “11180”, “11119”, “11203”, and “11201”.
References
van der Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013, 1–37 (2013)
van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P.: Responsible data science: using event data in a “people friendly” manner. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291, pp. 3–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62386-3_1
van der Aalst, W.M.P.: Benchmarking logs to test scalability of process discovery algorithms. Eindhoven University of Technology (2017). https://data.4tu.nl/repository/uuid:1cc41f8a-3557-499a-8b34-880c1251bd6e. Accessed 01 Apr 2018
van der Aalst, W.M.P.: Process discovery from event data: relating models and logs through abstractions. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 8(3), e1244 (2018)
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 2(2), 182–192 (2012)
van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Responsible data science. Bus. Inf. Syst. Eng. 59(5), 311–313 (2017)
van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Support. Coop. Work (CSCW) 14(6), 549–593 (2005)
Accorsi, R., Stocker, T., Müller, G.: On the exploitation of process mining for security audits: the process discovery case. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1462–1468. ACM (2013)
Bellare, M., Rogaway, P.: Introduction to modern cryptography. UCSD CSE 207, 207 (2005)
Burattin, A., Conti, M., Turato, D.: Toward an anonymous process mining. In: 2015 3rd International Conference on Future Internet of Things and Cloud (FiCloud), pp. 58–63. IEEE (2015)
Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption standard. Springer, Heidelberg (2013)
Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: International Conference on Process Mining, ICPM 2019, Aachen, Germany, 24–26 June 2019, pp. 1–8 (2019)
Kapoor, V., Poncelet, P., Trousset, F., Teisseire, M.: Privacy preserving sequential pattern mining in distributed databases. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 758–767. ACM (2006)
Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)
Kleinberg, J.M.: Challenges in mining social network data: processes, privacy, and paradoxes. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 4–5. ACM (2007)
Leemans, M., van der Aalst, W.M.P., van den Brand, M.G.: Hierarchical performance analysis for process mining. In: Proceedings of the 2018 International Conference on Software and System Process, pp. 96–105. ACM (2018)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2016). https://doi.org/10.1007/s10270-016-0545-x
Liu, C., Duan, H., Qingtian, Z., Zhou, M., Lu, F., Cheng, J.: Towards comprehensive support for privacy preservation cross-organization business process mining. IEEE Trans. Serv. Comput. 1, 1–1 (2016)
Ma, C.Y., Yau, D.K., Yip, N.K., Rao, N.S.: Privacy vulnerability of published anonymous mobility traces. IEEE/ACM Trans. Netw. (TON) 21(3), 720–733 (2013)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: Guided process discovery-a pattern-based approach. Inf. Syst. 76, 1–18 (2018)
Mannhardt, F., Petersen, S.A., Oliveira, M.F.: Privacy challenges for process mining in human-centered industrial environments. In: 2018 14th International Conference on Intelligent Environments (IE), pp. 64–71. IEEE (2018)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Scenario-based prediction of business processes using system dynamics. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM 2019. LNCS, vol. 11877, pp. 422–439. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33246-4_27
Rafiei, M., van der Aalst, W.M.P.: Mining roles from event logs while preserving privacy. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 676–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_54
Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Ensuring confidentiality in process mining. In: Proceedings of the 8th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2018), Seville, Spain, 13–14 December 2018, pp. 3–17 (2018). http://ceur-ws.org/Vol-2270/paper1.pdf
Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour in event logs. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320, pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93931-5_9
Tillem, G., Erkin, Z., Lagendijk, R.L.: Privacy-preserving alpha algorithm for software analysis. In: 37th WIC Symposium on Information Theory in the Benelux/6th WIC/IEEE SP Symposium on Information Theory and Signal Processing in the Benelux (2016)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)
Zhan, J.Z., Chang, L., Matwin, S.: Privacy-preserving collaborative sequential pattern mining. Technical report, Ottawa Univ (Ontario) School of Information Technology (2004)
Acknowledgment
We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research interactions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P. (2020). Supporting Confidentiality in Process Mining Using Abstraction and Encryption. In: Ceravolo, P., van Keulen, M., Gómez-López, M. (eds) Data-Driven Process Discovery and Analysis. SIMPDA SIMPDA 2018 2019. Lecture Notes in Business Information Processing, vol 379. Springer, Cham. https://doi.org/10.1007/978-3-030-46633-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-46633-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46632-9
Online ISBN: 978-3-030-46633-6
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ifip.org/