Skip to main content

Supporting Confidentiality in Process Mining Using Abstraction and Encryption

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 379)

Abstract

Process mining aims to bridge the gap between data science and process science by providing a variety of powerful data-driven analyses techniques on the basis of event data. These techniques encompass automatically discovering process models, detecting and predicting bottlenecks, and finding process deviations. In process mining, event data containing the full breadth of resource information allows for performance analysis and discovering social networks. On the other hand, event data are often highly sensitive, and when the data contain private information, privacy issues arise. Surprisingly, there has currently been little research toward security methods and encryption techniques for process mining. Therefore, in this paper, using abstraction, we propose an approach that allows us to hide confidential information in a controlled manner while ensuring that the desired process mining results can still be obtained. We show how our approach can support confidentiality while discovering control-flow and social networks. A connector method is applied as a technique for storing associations between events securely. We evaluate our approach by applying it on real-life event logs.

Keywords

  • Responsible process mining
  • Confidentiality
  • Process discovery
  • Directly follows graph
  • Social network analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-46633-6_6
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-46633-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Notes

  1. 1.

    It has 11 relations with the resources “112”, “11000”, “11189”, “10913”, “10861”, “10909”, “11181”, “11180”, “11119”, “11203”, and “11201”.

References

  1. van der Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013, 1–37 (2013)

    Google Scholar 

  2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

  3. van der Aalst, W.M.P.: Responsible data science: using event data in a “people friendly” manner. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291, pp. 3–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62386-3_1

    CrossRef  Google Scholar 

  4. van der Aalst, W.M.P.: Benchmarking logs to test scalability of process discovery algorithms. Eindhoven University of Technology (2017). https://data.4tu.nl/repository/uuid:1cc41f8a-3557-499a-8b34-880c1251bd6e. Accessed 01 Apr 2018

  5. van der Aalst, W.M.P.: Process discovery from event data: relating models and logs through abstractions. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 8(3), e1244 (2018)

    Google Scholar 

  6. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    CrossRef  Google Scholar 

  7. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 2(2), 182–192 (2012)

    Google Scholar 

  8. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Responsible data science. Bus. Inf. Syst. Eng. 59(5), 311–313 (2017)

    CrossRef  Google Scholar 

  9. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Support. Coop. Work (CSCW) 14(6), 549–593 (2005)

    CrossRef  Google Scholar 

  10. Accorsi, R., Stocker, T., Müller, G.: On the exploitation of process mining for security audits: the process discovery case. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1462–1468. ACM (2013)

    Google Scholar 

  11. Bellare, M., Rogaway, P.: Introduction to modern cryptography. UCSD CSE 207, 207 (2005)

    Google Scholar 

  12. Burattin, A., Conti, M., Turato, D.: Toward an anonymous process mining. In: 2015 3rd International Conference on Future Internet of Things and Cloud (FiCloud), pp. 58–63. IEEE (2015)

    Google Scholar 

  13. Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption standard. Springer, Heidelberg (2013)

    Google Scholar 

  14. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: International Conference on Process Mining, ICPM 2019, Aachen, Germany, 24–26 June 2019, pp. 1–8 (2019)

    Google Scholar 

  15. Kapoor, V., Poncelet, P., Trousset, F., Teisseire, M.: Privacy preserving sequential pattern mining in distributed databases. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 758–767. ACM (2006)

    Google Scholar 

  16. Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Google Scholar 

  17. Kleinberg, J.M.: Challenges in mining social network data: processes, privacy, and paradoxes. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 4–5. ACM (2007)

    Google Scholar 

  18. Leemans, M., van der Aalst, W.M.P., van den Brand, M.G.: Hierarchical performance analysis for process mining. In: Proceedings of the 2018 International Conference on Software and System Process, pp. 96–105. ACM (2018)

    Google Scholar 

  19. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2016). https://doi.org/10.1007/s10270-016-0545-x

    CrossRef  Google Scholar 

  20. Liu, C., Duan, H., Qingtian, Z., Zhou, M., Lu, F., Cheng, J.: Towards comprehensive support for privacy preservation cross-organization business process mining. IEEE Trans. Serv. Comput. 1, 1–1 (2016)

    CrossRef  Google Scholar 

  21. Ma, C.Y., Yau, D.K., Yip, N.K., Rao, N.S.: Privacy vulnerability of published anonymous mobility traces. IEEE/ACM Trans. Netw. (TON) 21(3), 720–733 (2013)

    CrossRef  Google Scholar 

  22. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: Guided process discovery-a pattern-based approach. Inf. Syst. 76, 1–18 (2018)

    CrossRef  Google Scholar 

  23. Mannhardt, F., Petersen, S.A., Oliveira, M.F.: Privacy challenges for process mining in human-centered industrial environments. In: 2018 14th International Conference on Intelligent Environments (IE), pp. 64–71. IEEE (2018)

    Google Scholar 

  24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    CrossRef  Google Scholar 

  25. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Scenario-based prediction of business processes using system dynamics. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM 2019. LNCS, vol. 11877, pp. 422–439. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33246-4_27

    CrossRef  Google Scholar 

  26. Rafiei, M., van der Aalst, W.M.P.: Mining roles from event logs while preserving privacy. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 676–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_54

    CrossRef  Google Scholar 

  27. Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Ensuring confidentiality in process mining. In: Proceedings of the 8th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2018), Seville, Spain, 13–14 December 2018, pp. 3–17 (2018). http://ceur-ws.org/Vol-2270/paper1.pdf

  28. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour in event logs. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320, pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93931-5_9

    CrossRef  Google Scholar 

  29. Tillem, G., Erkin, Z., Lagendijk, R.L.: Privacy-preserving alpha algorithm for software analysis. In: 37th WIC Symposium on Information Theory in the Benelux/6th WIC/IEEE SP Symposium on Information Theory and Signal Processing in the Benelux (2016)

    Google Scholar 

  30. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  31. Zhan, J.Z., Chang, L., Matwin, S.: Privacy-preserving collaborative sequential pattern mining. Technical report, Ottawa Univ (Ontario) School of Information Technology (2004)

    Google Scholar 

Download references

Acknowledgment

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research interactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Rafiei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P. (2020). Supporting Confidentiality in Process Mining Using Abstraction and Encryption. In: Ceravolo, P., van Keulen, M., Gómez-López, M. (eds) Data-Driven Process Discovery and Analysis. SIMPDA SIMPDA 2018 2019. Lecture Notes in Business Information Processing, vol 379. Springer, Cham. https://doi.org/10.1007/978-3-030-46633-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46633-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46632-9

  • Online ISBN: 978-3-030-46633-6

  • eBook Packages: Computer ScienceComputer Science (R0)