Skip to main content

Black Hole Superradiance in Astrophysics

  • Chapter
  • First Online:
Superradiance

Part of the book series: Lecture Notes in Physics ((LNP,volume 971))

  • 1100 Accesses

Abstract

BHs are one of the most striking predictions of Einstein’s GR, or of any relativistic theory of gravity. Since Schmidt’s identification of the first quasar, large consensus in the astronomy community has mounted that nearly all galactic centers harbor a supermassive BH and that compact objects with mass above ∼3M should be BHs (we discuss some alternatives to this paradigm in Sect. 5.7.2 below; see Ref. Cardoso and Pani (Living Rev Rel 22(1):4, 2019. arXiv:1904.05363 [gr-qc]) for a recent review). Indeed, strong evidence exists that astrophysical BHs with masses ranging from few solar masses to billions of solar masses are abundant objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the absence of superradiance the BH would reach extremality in finite time, whereas radiation effects set an upper bound of aM ∼ 0.998 [34]. To mimic this upper bound in a simplistic way, a smooth cutoff in the accretion rate for the angular momentum can be introduced [24]. This cutoff merely prevents the BH to reach extremality and does not play any role in the evolution.

  2. 2.

    Note that, through Eq. (5.1), the mass accretion rate only depends on the combination f EddM, so that a BH with mass M = 106M and f Edd ∼ 10−3 would have the same accretion rate of a smaller BH with M = 104M accreting at rate f Edd ∼ 10−1. Because this is the only relevant scale for a fixed value of μ SM, in our model the evolution of a BH with different mass can be obtained from Fig. 5.2 by rescaling f Edd and μ S.

  3. 3.

    As we already discussed, as m increases, larger values of μ are allowed in the instability region and virtually any value of μ gives some unstable mode in the eikonal (l, m ≫ 1) limit. However, the instability is highly suppressed as l increases so that, in practice, only the first few allowed values of l = m correspond to an effective instability.

  4. 4.

    Some recent observations of ultraluminous X-ray sources suggest that these sources contain intermediate-mass BHs (e.g., [67, 68]), suggesting that the BH mass spectrum might be populated continuously from few solar masses to billions of solar masses.

  5. 5.

    In the spin-2 case there exists a special dipolar mode [18] that does not follow the behavior of Eq. (5.11).

  6. 6.

    This is because the signal is produced by a spinning quadrupolar field and not by a spinning dipolar field [49]. The hexadecapolar nature of the radiation implies that the signal vanishes along the BH spin axis, at variance with the quadrupolar case, for which it is maximum in that direction.

  7. 7.

    The root-mean-square GW strain for a LIGO-like detector is given by \(h=\sqrt {\dot {E}_{\mathrm {GW}}/(5 d^2\pi ^2 f^2)}\) [26], for a source emitting power \(\dot {E}_{\mathrm {GW}}\) at frequency f and at distance d away from the detector.

  8. 8.

    Assuming an observation time T obs, the signal-to-noise (SNR) ratio of a monochromatic signal with frequency f scales as \({\mathrm {SNR}}\propto h\sqrt {T_{\mathrm {obs}}/S_n(f)}\), where S n(f) is the noise PSD. The noise curves we plot in Fig. 5.6 are given by \(\sqrt {S_n(f)/T_{\mathrm {obs}}}\) such that a quick estimate of the SNR can be obtained by taking the ratio between the signal amplitude and the noise curves.

  9. 9.

    Here \(\tilde {n}\) denotes the principal quantum number given by \(\tilde {n}=l+S+n+1\).

  10. 10.

    As previously discussed, observations of LMC X-3 and Cygnus X-1 are consistent with a constant spin on a time scale of the order of 10 years, which gives a very mild bound compared to the one discussed in this section.

  11. 11.

    As was pointed out in Ref. [141], for the (unrealistic) Ernst metric in which radiation cannot escape, the end state is most likely a rotating BH in equilibrium with the outside radiation, similarly to the asymptotically AdS case discussed in Sect. 4.5.1. However, in realistic situations part of the radiation will escape to infinity, reducing the BH spin (see discussion below).

  12. 12.

    The strength of the magnetic field can be measured defining the characteristic magnetic field B M = 1∕M associated to a spacetime curvature of the same order of the horizon curvature. In physical units this is given by \(B_M\sim 2.4\times 10^{19} \left (M_{\odot }/M\right ) {\mathrm {Gauss}}\).

  13. 13.

    Recently, Ref. [159] showed that long-lived modes necessarily exist for matter configurations whose trace of the stress-energy tensor is positive (or zero). For a perfect-fluid star, this requires P > ρ∕3, where P and ρ are the NS pressure and density. This is an extreme configuration which is unlikely to exist in ordinary stars, but it might occur in other models of ultracompact objects, as those discussed in Sect. 5.7.2.

  14. 14.

    Even constant-density NSs have a maximum compactness which is smaller than the BH limit MR = 1∕2. Inspection of Eq. (F.2) shows that MR ≤ 4∕9 to ensure regularity of the geometry. More realistic equations of state yield a maximum mass and a maximum compactness.

  15. 15.

    The angular momentum of a boson star is quantized [199]; this prevents performing a standard slow-rotation approximation. Furthermore, there are indications that spinning scalar boson stars (at variance with their vector counterpart known as Proca stars [200]) are also subject to another (nonsuperradiant) type of instability, at least in the absence of self-interactions [201].

  16. 16.

    The dependence of \(|\mathcal {R}_{\mathrm {surface}}|{ }^2\) on the combination ω − m Ω should actually be linear, hence the change of sign in the superradiant regime. Heuristically this can be understood as follows. Let us consider a compact object such that the effective potential vanishes at its surface. The field near the surface is \(\Psi \sim e^{-i (\omega -m\Omega ) r_*}\) and the energy flux depends on linear partial derivatives with respect to the tortoise coordinate, \(\partial _{r_*}\Psi \), which brings a linear ω − m Ω dependence.

  17. 17.

    Interestingly the analogy between the BZ process and superradiance might be more than just an analogy. In fact, Ref. [247] recently showed that the BZ process can be interpreted as the long wavelength limit of the superradiant scattering from Alfvénic waves in the plasma.

  18. 18.

    A condition for this to happen is that initially there is a small electric field component parallel to the magnetic field (note that this is a Lorentz invariant condition). In Ref. [252], this was shown to occur for rotating BHs immersed in a magnetic field.

  19. 19.

    The use of a 3 + 1 spacetime decomposition was mainly useful to write the equations in a more familiar form for the astrophysics community. In fact most of the work done in this area in the last decades has been done using this formalism. Recently the GR community has regained interest in the subject and some remarkable effort has been done to develop a fully covariant theory of force-free magnetospheres around rotating BHs [254].

  20. 20.

    This is not to be confused with the jet efficiency, defined by \(\eta _{\mathrm {jet}}=\left <L_{\mathrm {jet}}\right >/\big <\dot {M}\big >\), where \(\left <L_{\mathrm {jet}}\right >\) is the time-average jet luminosity and \(\big <\dot {M}\big >\) is the time-average rate of matter accretion by the BH. Recently, efficiencies up to η jet ∼ 300% have been obtained in GRMHD simulations [245, 249, 250, 266] which is a strong indication that the BZ mechanism is at work.

  21. 21.

    However from the point of view of BH complementarity introduced in Ref. [270], the membrane is real as long as the observers remain outside the horizon, but fictitious for observers who jump inside the BH. Since neither observer can verify a contradiction between each other, the two are complementary in the same sense of the wave–particle duality.

References

  1. E. Berti, et al., Testing general relativity with present and future astrophysical observations. Class. Quant. Grav. 32, 243001 (2015). arXiv:1501.07274 [gr-qc]

    Google Scholar 

  2. M. Schmidt, 3C 273: A star-like object with large red-shift. Nature 197, 1040 (1963)

    Article  ADS  Google Scholar 

  3. V. Cardoso, P. Pani, Testing the nature of dark compact objects: a status report. Living Rev. Rel. 22(1), 4 (2019). arXiv:1904.05363 [gr-qc]

    Google Scholar 

  4. LIGO Scientific, Virgo Collaboration, B.P. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X9(3), 031040 (2019). arXiv:1811.12907 [astro-ph.HE]

    Google Scholar 

  5. Ligo scientific collaboration. http://www.ligo.org/

  6. Virgo. http://www.ego-gw.it

  7. S. Doeleman, J. Weintroub, A.E. Rogers, R. Plambeck, R. Freund, et al., Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 455, 78 (2008). arXiv:0809.2442 [astro-ph]

    Google Scholar 

  8. KAGRA: Large-scale cryogenic gravitational wave telescope project. http://gwcenter.icrr.u-tokyo.ac.jp/en/

  9. Einstein telescope (2008). http://www.et-gw.eu/

  10. LISA. https://www.lisamission.org/.

  11. R.-S. Lu, A.E. Broderick, F. Baron, J.D. Monnier, V.L. Fish, S.S. Doeleman, V. Pankratius, Imaging the supermassive black hole shadow and jet base of m87 with the event horizon telescope. Astrophys. J. 788(2), 120 (2014). http://stacks.iop.org/0004-637X/788/i=2/a=120

  12. F. Eisenhauer, G. Perrin, W. Brandner, C. Straubmeier, A. Richichi, et al., GRAVITY: getting to the event horizon of Sgr A*, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7013. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2008). arXiv:0808.0063

    Google Scholar 

  13. Event Horizon Telescope Collaboration, K. Akiyama, et al., First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. 875(1), L1 (2019)

    Google Scholar 

  14. V. Cardoso, S. Yoshida, Superradiant instabilities of rotating black branes and strings. J. High Energy Phys. 0507, 009 (2005). arXiv:hep-th/0502206 [hep-th]

    Google Scholar 

  15. S.R. Dolan, Instability of the massive Klein-Gordon field on the Kerr spacetime. Phys. Rev. D76, 084001 (2007). arXiv:0705.2880 [gr-qc]

    Google Scholar 

  16. P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, Black hole bombs and photon mass bounds. Phys. Rev. Lett. 109, 131102 (2012). arXiv:1209.0465 [gr-qc]

    Google Scholar 

  17. H. Witek, V. Cardoso, A. Ishibashi, U. Sperhake, Superradiant instabilities in astrophysical systems. Phys. Rev. D87, 043513 (2013). arXiv:1212.0551 [gr-qc]

    Google Scholar 

  18. R. Brito, V. Cardoso, P. Pani, Massive spin-2 fields on black hole spacetimes: instability of the Schwarzschild and Kerr solutions and bounds on the graviton mass. Phys. Rev. D88, 023514 (2013). arXiv:1304.6725 [gr-qc]

    Google Scholar 

  19. P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, Perturbations of slowly rotating black holes: massive vector fields in the Kerr metric. Phys. Rev. D86, 104017 (2012). arXiv:1209.0773 [gr-qc]

    Google Scholar 

  20. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, J. March-Russell, String axiverse. Phys. Rev. D81, 123530 (2010). arXiv:0905.4720 [hep-th]

    Google Scholar 

  21. A. Arvanitaki, S. Dubovsky, Exploring the string axiverse with precision black hole physics. Phys. Rev. D83, 044026 (2011). arXiv:1004.3558 [hep-th]

    Google Scholar 

  22. H. Okawa, H. Witek, V. Cardoso, Black holes and fundamental fields in numerical relativity: initial data construction and evolution of bound states. Phys. Rev. D89, 104032 (2014). arXiv:1401.1548 [gr-qc]

    Google Scholar 

  23. V. Cardoso, Black hole bombs and explosions: from astrophysics to particle physics. Gen. Rel. Grav. 45, 2079–2097 (2013). arXiv:1307.0038 [gr-qc]

    Google Scholar 

  24. R. Brito, V. Cardoso, P. Pani, Black holes as particle detectors: evolution of superradiant instabilities. Class. Quant. Grav. 32(13), 134001 (2015). arXiv:1411.0686 [gr-qc]

    Google Scholar 

  25. H. Yoshino, H. Kodama, The bosenova and axiverse. Class. Quant. Grav. 32(21), 214001 (2015). arXiv:1505.00714 [gr-qc]

    Google Scholar 

  26. R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, P. Pani, Gravitational wave searches for ultralight bosons with LIGO and LISA. Phys. Rev. D96(6), 064050 (2017). arXiv:1706.06311 [gr-qc]

    Google Scholar 

  27. W.E. East, F. Pretorius, Superradiant instability and backreaction of massive vector fields around Kerr black holes. Phys. Rev. Lett. 119(4), 041101 (2017). arXiv:1704.04791 [gr-qc]

    Google Scholar 

  28. W.E. East, Massive Boson superradiant instability of black holes: nonlinear growth, saturation, and gravitational radiation. Phys. Rev. Lett. 121(13), 131104 (2018). arXiv:1807.00043 [gr-qc]

    Google Scholar 

  29. S.L. Detweiler, Klein-Gordon equation and rotating black holes. Phys. Rev. D22, 2323–2326 (1980)

    ADS  Google Scholar 

  30. H. Yoshino, H. Kodama, Gravitational radiation from an axion cloud around a black hole: superradiant phase. Prog. Theor. Exp. Phys. 2014, 043E02 (2014). arXiv:1312.2326 [gr-qc]

    Google Scholar 

  31. E. Barausse, V. Cardoso, P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D89, 104059 (2014). arXiv:1404.7149 [gr-qc]

    Google Scholar 

  32. D. Lynden-Bell, Galactic nuclei as collapsed old quasars. Nature 223, 690 (1969)

    Article  ADS  Google Scholar 

  33. A. Soltan, Masses of quasars. Mon. Not. Roy. Astron. Soc. 200, 115–122 (1982)

    Article  ADS  Google Scholar 

  34. K.S. Thorne, Disk accretion onto a black hole. 2. Evolution of the hole. Astrophys. J. 191, 507–520 (1974)

    Google Scholar 

  35. J.M. Bardeen, Kerr metric black holes. Nature 226, 64–65 (1970)

    Article  ADS  Google Scholar 

  36. L. Brenneman, C. Reynolds, M. Nowak, R. Reis, M. Trippe, et al., The spin of the supermassive black hole in NGC 3783. Astrophys. J. 736, 103 (2011). arXiv:1104.1172 [astro-ph.HE]

    Google Scholar 

  37. G. Ficarra, P. Pani, H. Witek, Impact of multiple modes on the black-hole superradiant instability. Phys. Rev. D99(10), 104019 (2019). arXiv:1812.02758 [gr-qc]

    Google Scholar 

  38. A. Arvanitaki, M. Baryakhtar, X. Huang, Discovering the QCD Axion with black holes and gravitational waves. Phys. Rev. D91(8), 084011 (2015). arXiv:1411.2263 [hep-ph]

    Google Scholar 

  39. H. Kodama, H. Yoshino, Axiverse and black hole. Int. J. Mod. Phys. Conf. Ser. 7, 84–115 (2012). arXiv:1108.1365 [hep-th]

    Google Scholar 

  40. H. Yoshino, H. Kodama, Bosenova collapse of axion cloud around a rotating black hole. Prog. Theor. Phys. 128, 153–190 (2012). arXiv:1203.5070 [gr-qc]

    Google Scholar 

  41. A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky, R. Lasenby, Black hole mergers and the QCD axion at advanced LIGO. Phys. Rev. D95(4), 043001 (2017). arXiv:1604.03958 [hep-ph]

    Google Scholar 

  42. R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, P. Pani, Stochastic and resolvable gravitational waves from ultralight bosons. Phys. Rev. Lett. 119(13), 131101 (2017). arXiv:1706.05097 [gr-qc]

    Google Scholar 

  43. V. Cardoso, O.J.C. Dias, G.S. Hartnett, M. Middleton, P. Pani, J.E. Santos, Constraining the mass of dark photons and axion-like particles through black-hole superradiance. J. Cosmol. Astropart. Phys. 1803(03), 043 (2018). arXiv:1801.01420 [gr-qc]

    Google Scholar 

  44. M.J. Stott, D.J.E. Marsh, Black hole spin constraints on the mass spectrum and number of axionlike fields. Phys. Rev. D98(8), 083006 (2018). arXiv:1805.02016 [hep-ph]

    Google Scholar 

  45. H. Davoudiasl, P.B. Denton, Ultralight boson dark matter and event horizon telescope observations of M87*. Phys. Rev. Lett. 123(2), 021102 (2019). arXiv:1904.09242 [astro-ph.CO]

    Google Scholar 

  46. B. Bozek, D.J.E. Marsh, J. Silk, R.F.G. Wyse, Galaxy UV-luminosity function and reionisation constraints on axion dark matter (2015). arXiv:1409.3544 [astro-ph.CO]

    Google Scholar 

  47. R. Hlozek, D. Grin, D.J.E. Marsh, P.G. Ferreira, A search for ultra-light axions using precision cosmological data (2015). arXiv:1410.2896 [astro-ph.CO]

    Google Scholar 

  48. M. Baryakhtar, R. Lasenby, M. Teo, Black hole superradiance signatures of ultralight vectors. Phys. Rev. D96(3), 035019 (2017). arXiv:1704.05081 [hep-ph]

    Google Scholar 

  49. R. Brito, S. Grillo, P. Pani, Black hole superradiant instability from ultralight spin-2 fields. Phys. Rev. Lett. 124(21), 211101 (2020). http://dx.doi.org/10.1103/PhysRevLett.124.211101

    Google Scholar 

  50. M. Middleton, A. Ingram, Doppler disc tomography applied to low mass AGN spin. Mon. Not. Roy. Astron. Soc. 446, 1312–1320 (2015). arXiv:1410.5992 [astro-ph.HE]

    Google Scholar 

  51. A.C. Fabian, K. Iwasawa, C.S. Reynolds, A.J. Young, Broad iron lines in active galactic nuclei. Publ. Astron. Soc. Pac. 112, 1145 (2000). arXiv:astro-ph/0004366 [astro-ph]

    Google Scholar 

  52. S.N. Zhang, W. Cui, W. Chen, Black hole spin in X-ray binaries: observational consequences. Astrophys. J. 482, L155 (1997). arXiv:astro-ph/9704072 [astro-ph]

    Google Scholar 

  53. R. Shafee, R. Narayan, J.E. McClintock, Viscous torque and dissipation in the inner region of a thin accretion disk: implications for measuring black hole spin. Astrophys. J. 676, 549 (2008). arXiv:0705.2244 [astro-ph]

    Google Scholar 

  54. R.F. Penna, J.C. McKinney, R. Narayan, A. Tchekhovskoy, R. Shafee, J.E. McClintock, Simulations of magnetized disks around black holes: effects of black hole spin, disk thickness, and magnetic field geometry. Mon. Not. Roy. Astron. Soc. 408, 752 (2010). arXiv:1003.0966 [astro-ph.HE]

    Google Scholar 

  55. C. Done, S. Davis, C. Jin, O. Blaes, M. Ward, Intrinsic disc emission and the soft X-ray excess in AGN. Mon. Not. Roy. Astron. Soc. 420, 1848 (2012). arXiv:1107.5429 [astro-ph.HE]

    Google Scholar 

  56. J.F. Steiner, J.E. McClintock, R.A. Remillard, L. Gou, S. Yamada, R. Narayan, The constant inner-disk radius of LMC X-3: a basis for measuring black hole spin. Astrophys. J. 718, L117–L121 (2010). arXiv:1006.5729 [astro-ph.HE]

    Google Scholar 

  57. L. Gou, J.E. McClintock, J. Liu, R. Narayan, J.F. Steiner, R.A. Remillard, J.A. Orosz, S.W. Davis, A determination of the spin of the black hole primary in LMC X-1. Astrophys. J. 701, 1076–1090 (2009). arXiv:0901.0920 [astro-ph.HE]

    Google Scholar 

  58. T. Venumadhav, B. Zackay, J. Roulet, L. Dai, M. Zaldarriaga, New binary black hole mergers in the second observing run of advanced LIGO and advanced virgo (2020). arXiv:1904.07214 [astro-ph.HE]

    Google Scholar 

  59. LIGO Scientific, Virgo Collaboration, B.P. Abbott, et al., Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X6(4), 041015 (2016). [erratum: Phys. Rev.X8,no.3,039903(2018)]. arXiv:1606.04856 [gr-qc]

    Google Scholar 

  60. LISA Collaboration, H. Audley, et al., Laser interferometer space antenna (2017). arXiv:1702.00786 [astro-ph.IM]

    Google Scholar 

  61. M. Middleton, Black hole spin: theory and observation (2015). arXiv:1507.06153 [astro-ph.HE]

    Google Scholar 

  62. B.S. Sathyaprakash, et al., Extreme gravity and fundamental physics (2019). arXiv:1903.09221 [astro-ph.HE]

    Google Scholar 

  63. K.K.Y. Ng, O.A. Hannuksela, S. Vitale, T.G.F. Li, Searching for ultralight bosons within spin measurements of a population of binary black hole mergers (2019). arXiv:1908.02312 [gr-qc]

    Google Scholar 

  64. A. Klein, et al., Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D93(2), 024003 (2016). arXiv:1511.05581 [gr-qc]

    Google Scholar 

  65. M. Isi, L. Sun, R. Brito, A. Melatos, Directed searches for gravitational waves from ultralight bosons. Phys. Rev. D99(8), 084042 (2019). arXiv:1810.03812 [gr-qc]

    Google Scholar 

  66. S. Ghosh, E. Berti, R. Brito, M. Richartz, Follow-up signals from superradiant instabilities of black hole merger remnants. Phys. Rev. D99(10), 104030 (2019). arXiv:1812.01620 [gr-qc]

    Google Scholar 

  67. D.R. Pasham, T.E. Strohmayer, R.F. Mushotzky, A 400-solar-mass black hole in the galaxy M82. Nature 513, 74–76 (2014)

    Article  ADS  Google Scholar 

  68. D. Lin, et al., A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2(8), 656–661 (2018). arXiv:1806.05692 [astro-ph.HE]

    Google Scholar 

  69. S. Schmoll, J. Miller, M. Volonteri, E. Cackett, C. Reynolds, et al., Constraining the spin of the black hole in fairall 9 with Suzaku. Astrophys. J. 703, 2171–2176 (2009). arXiv:0908.0013 [astro-ph.HE]

    Google Scholar 

  70. L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Ultralight scalars as cosmological dark matter. Phys. Rev. D95(4), 043541 (2017). arXiv:1610.08297 [astro-ph.CO]

    Google Scholar 

  71. Event Horizon Telescope Collaboration, K. Akiyama, et al., First M87 event horizon telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. 875(1), L5 (2019). arXiv:1906.11242 [astro-ph.GA]

    Google Scholar 

  72. F. Tamburini, B. Thide, M. Della Valle, Measurement of the spin of the M87 black hole from its observed twisted light. Mon. Not. Roy. Astron. Soc. 492(1), L22–L27 (2020). arXiv:1904.07923 [astro-ph.HE]

    Google Scholar 

  73. N.J. McConnell, C.-P. Ma, K. Gebhardt, S.A. Wright, J.D. Murphy, et al., Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies. Nature 480, 215 (2011). arXiv:1112.1078 [astro-ph.CO]

    Google Scholar 

  74. N.J. McConnell, C.-P. Ma, J.D. Murphy, K. Gebhardt, T.R. Lauer, et al., Dynamical measurements of black hole masses in four brightest cluster galaxies at 100 Mpc. Astrophys. J. 756, 179 (2012). arXiv:1203.1620 [astro-ph.CO]

    Google Scholar 

  75. N. Fernandez, A. Ghalsasi, S. Profumo, Superradiance and the spins of black holes from LIGO and X-ray binaries (2019). arXiv:1911.07862 [hep-ph]

    Google Scholar 

  76. Particle Data Group Collaboration, K. Olive, et al., Review of particle physics. Chin. Phys. C38, 090001 (2014)

    Google Scholar 

  77. H. Yoshino, H. Kodama, Probing the string axiverse by gravitational waves from Cygnus X-1. Prog. Theor. Exp. Phys. 2015(6), 061E01 (2015). arXiv:1407.2030 [gr-qc]

    Google Scholar 

  78. W.E. East, Superradiant instability of massive vector fields around spinning black holes in the relativistic regime. Phys. Rev. D96(2), 024004 (2017). arXiv:1705.01544 [gr-qc]

    Google Scholar 

  79. N. Siemonsen, W.E. East, Gravitational wave signatures of ultralight vector bosons from black hole superradiance. Phys. Rev. D101(2), 024019 (2020). arXiv:1910.09476 [gr-qc]

    Google Scholar 

  80. VIRGO, LIGO Scientific Collaboration, B.P. Abbott, et al., Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced virgo (2013). [Living Rev. Rel.19,1(2016)]. arXiv:1304.0670 [gr-qc]

    Google Scholar 

  81. S. Kawamura, et al., The Japanese space gravitational wave antenna DECIGO. Class. Quant. Grav. 23, S125–S132 (2006)

    Article  Google Scholar 

  82. P. Amaro-Seoane, et al., eLISA: astrophysics and cosmology in the millihertz regime (2012). arXiv:1201.3621 [astro-ph]

    Google Scholar 

  83. S.J. Zhu, M. Baryakhtar, M.A. Papa, D. Tsuna, N. Kawanaka, H.-B. Eggenstein, Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes (2020). arXiv:2003.03359 [gr-qc]

    Google Scholar 

  84. C. Palomba, et al., Direct constraints on ultra-light boson mass from searches for continuous gravitational waves. Phys. Rev. Lett. 123, 171101 (2019). arXiv:1909.08854 [astro-ph.HE]

    Google Scholar 

  85. V. Dergachev, M.A. Papa, Sensitivity improvements in the search for periodic gravitational waves using O1 LIGO data. Phys. Rev. Lett. 123(10), 101101 (2019). arXiv:1902.05530 [gr-qc]

    Google Scholar 

  86. V. Dergachev, M.A. Papa, Results from an extended falcon all-sky survey for continuous gravitational waves. Phys. Rev. D101(2), 022001 (2020). arXiv:1909.09619 [gr-qc]

    Google Scholar 

  87. LIGO Scientific, Virgo Collaboration, B.P. Abbott, et al., All-sky search for continuous gravitational waves from isolated neutron stars using advanced LIGO O2 data. Phys. Rev. D100(2), 024004 (2019). arXiv:1903.01901 [astro-ph.HE]

    Google Scholar 

  88. S. Hild, et al., Sensitivity studies for third-generation gravitational wave observatories. Class. Quant. Grav. 28, 094013 (2011). arXiv:1012.0908 [gr-qc]

    Google Scholar 

  89. LIGO Scientific Collaboration, B.P. Abbott, et al., Exploring the sensitivity of next generation gravitational wave detectors. Class. Quant. Grav. 34(4), 044001 (2017). arXiv:1607.08697 [astro-ph.IM]

    Google Scholar 

  90. R. Essick, S. Vitale, M. Evans, Frequency-dependent responses in third generation gravitational-wave detectors. Phys. Rev. D96(8), 084004 (2017). arXiv:1708.06843 [gr-qc]

    Google Scholar 

  91. S. D’Antonio, et al., Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes. Phys. Rev. D98(10), 103017 (2018). arXiv:1809.07202 [gr-qc]

    Google Scholar 

  92. L. Sun, R. Brito, M. Isi, Search for ultralight bosons in Cygnus X-1 with advanced LIGO (2020). arXiv:1909.11267 [gr-qc]

    Google Scholar 

  93. E. Thrane, J.D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds. Phys. Rev. D88(12), 124032 (2013). arXiv:1310.5300 [astro-ph.IM]

    Google Scholar 

  94. LIGO Scientific, Virgo Collaboration, B. P. Abbott, et al., Search for the isotropic stochastic background using data from advanced LIGO’s second observing run. Phys. Rev. D100(6), 061101 (2019). arXiv:1903.02886 [gr-qc]

    Google Scholar 

  95. L. Tsukada, T. Callister, A. Matas, P. Meyers, First search for a stochastic gravitational-wave background from ultralight bosons. Phys. Rev. D99(10), 103015 (2019). arXiv:1812.09622 [astro-ph.HE]

    Google Scholar 

  96. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115(21), 211102 (2015). arXiv:1509.00021 [gr-qc]

    Google Scholar 

  97. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D25(09), 1641021 (2016). arXiv:1605.08293 [gr-qc]

    Google Scholar 

  98. F.H. Vincent, E. Gourgoulhon, C. Herdeiro, E. Radu, Astrophysical imaging of Kerr black holes with scalar hair. Phys. Rev. D94(8), 084045 (2016). arXiv:1606.04246 [gr-qc]

    Google Scholar 

  99. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, EHT constraint on the ultralight scalar hair of the M87 supermassive black hole. Universe 5(12), 220 (2019). arXiv:1909.08039 [gr-qc]

    Google Scholar 

  100. N. Franchini, P. Pani, A. Maselli, L. Gualtieri, C.A.R. Herdeiro, E. Radu, V. Ferrari, Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations. Phys. Rev. D95(12), 124025 (2017). arXiv:1612.00038 [astro-ph.HE]

    Google Scholar 

  101. Y. Ni, M. Zhou, A. Cardenas-Avendano, C. Bambi, C.A.R. Herdeiro, E. Radu, Iron Kα line of Kerr black holes with scalar hair. J. Cosmol. Astropart. Phys. 1607(07), 049 (2016). arXiv:1606.04654 [gr-qc]

    Google Scholar 

  102. J.G. Rosa, T.W. Kephart, Stimulated axion decay in superradiant clouds around primordial black holes. Phys. Rev. Lett. 120(23), 231102 (2018). arXiv:1709.06581 [gr-qc]

    Google Scholar 

  103. T. Ikeda, R. Brito, V. Cardoso, Blasts of light from axions. Phys. Rev. Lett. 122(8), 081101 (2019). arXiv:1811.04950 [gr-qc]

    Google Scholar 

  104. M. Boskovic, R. Brito, V. Cardoso, T. Ikeda, H. Witek, Axionic instabilities and new black hole solutions. Phys. Rev. D99(3), 035006 (2019). arXiv:1811.04945 [gr-qc]

    Google Scholar 

  105. A.D. Plascencia, A. Urbano, Black hole superradiance and polarization-dependent bending of light. J. Cosmol. Astropart. Phys. 1804(04), 059 (2018). arXiv:1711.08298 [gr-qc]

    Google Scholar 

  106. Y. Chen, J. Shu, X. Xue, Q. Yuan, Y. Zhao, Probing axions with event horizon telescope polarimetric measurements. Phys. Rev. Lett. 124(6), 061102 (2020). arXiv:1905.02213 [hep-ph]

    Google Scholar 

  107. S. Sen, Plasma effects on lasing of a uniform ultralight axion condensate. Phys. Rev. D98(10), 103012 (2018). arXiv:1805.06471 [hep-ph]

    Google Scholar 

  108. S. Chigusa, T. Moroi, K. Nakayama, Signals of axion like dark matter in time dependent polarization of light. Phys. Lett. B803, 135288 (2020). arXiv:1911.09850 [astro-ph.CO]

    Google Scholar 

  109. D. Harari, P. Sikivie, Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background. Phys. Lett. B289, 67–72 (1992)

    Article  ADS  Google Scholar 

  110. J. Zhang, H. Yang, Gravitational floating orbits around hairy black holes. Phys. Rev. D99(6), 064018 (2019). arXiv:1808.02905 [gr-qc]

    Google Scholar 

  111. D. Baumann, H.S. Chia, R.A. Porto, J. Stout, Gravitational collider physics (2020). arXiv:1912.04932 [gr-qc]

    Google Scholar 

  112. D. Baumann, H.S. Chia, R.A. Porto, Probing ultralight bosons with binary black holes. Phys. Rev. D99(4), 044001 (2019). arXiv:1804.03208 [gr-qc]

    Google Scholar 

  113. E. Berti, R. Brito, C.F.B. Macedo, G. Raposo, J.L. Rosa, Ultralight boson cloud depletion in binary systems. Phys. Rev. D99(10), 104039 (2019). arXiv:1904.03131 [gr-qc]

    Google Scholar 

  114. J. Zhang, H. Yang, Dynamic signatures of black hole binaries with superradiant clouds (2020). arXiv:1907.13582 [gr-qc]

    Google Scholar 

  115. J.A. Orosz, J.E. McClintock, J.P. Aufdenberg, R.A. Remillard, M.J. Reid, R. Narayan, L. Gou, The mass of the black hole in Cygnus X-1. Astrophys. J. 742(2), 84 (2011). http://dx.doi.org/10.1088/0004-637X/742/2/84

  116. GRAVITY Collaboration, R. Abuter, et al., Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615, L15 (2018). arXiv:1807.09409 [astro-ph.GA]

    Google Scholar 

  117. S. Naoz, C.M. Will, E. Ramirez-Ruiz, A. Hees, A.M. Ghez, T. Do, A hidden friend for the galactic center black hole, Sgr A* (2019). arXiv:1912.04910 [astro-ph.GA]

    Google Scholar 

  118. M.C. Ferreira, C.F.B. Macedo, V. Cardoso, Orbital fingerprints of ultralight scalar fields around black holes. Phys. Rev. D96(8), 083017 (2017). arXiv:1710.00830 [gr-qc]

    Google Scholar 

  119. O.A. Hannuksela, K.W.K. Wong, R. Brito, E. Berti, T.G.F. Li, Probing the existence of ultralight bosons with a single gravitational-wave measurement. Nat. Astron. 3(5), 447–451 (2019). arXiv:1804.09659 [astro-ph.HE]

    Google Scholar 

  120. N. Bar, K. Blum, T. Lacroix, P. Panci, Looking for ultralight dark matter near supermassive black holes. J. Cosmol. Astropart. Phys. 1907, 045 (2019). arXiv:1905.11745 [astro-ph.CO]

    Google Scholar 

  121. GRAVITY Collaboration, A. Amorim, et al., Scalar field effects on the orbit of S2 star. Mon. Not. Roy. Astron. Soc. 489(4), 4606–4621 (2019). arXiv:1908.06681 [astro-ph.GA]

    Google Scholar 

  122. M. Kavic, S.L. Liebling, M. Lippert, J.H. Simonetti, Accessing the axion via compact object binaries (2019). arXiv:1910.06977 [astro-ph.HE]

    Google Scholar 

  123. C.F. Macedo, P. Pani, V. Cardoso, L.C. Crispino, Into the lair: gravitational-wave signatures of dark matter. Astrophys. J. 774, 48 (2013). arXiv:1302.2646

    Google Scholar 

  124. D.R. Lorimer, M. Kramer, Handbook of Pulsar Astronomy, vol. 4 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  125. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue. Astron. J. 129, 1993 (2005). arXiv:astro-ph/0412641 [astro-ph]

    Google Scholar 

  126. K. Stovall, et al., Timing of five PALFA-discovered millisecond pulsars. Astrophys. J. 833(2), 192 (2016). arXiv:1608.08880 [astro-ph.HE]

    Google Scholar 

  127. J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, A radio pulsar spinning at 716-HZ. Science 311, 1901–1904 (2006). arXiv:astro-ph/0601337 [astro-ph]

    Google Scholar 

  128. Z. Arzoumanian, A.S. Fruchter, J.H. Taylor, Orbital variability in the eclipsing pulsar binary PSR B1957+20. Astrophys. J. 426, L85 (1994). arXiv:astro-ph/9312032 [astro-ph]

    Google Scholar 

  129. A. Mirizzi, J. Redondo, G. Sigl, Microwave background constraints on mixing of photons with hidden photons. J. Cosmol. Astropart. Phys. 0903, 026 (2009). arXiv:0901.0014 [hep-ph]

    Google Scholar 

  130. V. Cardoso, P. Pani, T.-T. Yu, Superradiance in rotating stars and pulsar-timing constraints on dark photons. Phys. Rev. D95(12), 124056 (2017). arXiv:1704.06151 [gr-qc]

    Google Scholar 

  131. V. Cardoso, R. Brito, J.L. Rosa, Superradiance in stars. Phys. Rev. D91(12), 124026 (2015). arXiv:1505.05509 [gr-qc]

    Google Scholar 

  132. D.E. Kaplan, S. Rajendran, P. Riggins, Particle probes with superradiant pulsars (2019). arXiv:1908.10440 [hep-ph]

    Google Scholar 

  133. S.A. Teukolsky, Perturbations of a rotating black hole. PhD Thesis, California Institute of Technology, 1973

    Google Scholar 

  134. W.H. Press, S.A. Teukolsky, Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972)

    Article  ADS  Google Scholar 

  135. P. Pani, A. Loeb, Constraining primordial black-hole bombs through spectral distortions of the cosmic microwave background. Phys. Rev. D88, 041301 (2013). arXiv:1307.5176 [astro-ph.CO]

    Google Scholar 

  136. R. Kulsrud, A. Loeb, Dynamics and gravitational interaction of waves in nonuniform media. Phys. Rev. D45, 525–531 (1992)

    ADS  MathSciNet  Google Scholar 

  137. M.H. Van Putten, Superradiance in a Torus magnetosphere around a black hole. Science 284(5411), 115–118 (1999)

    Article  ADS  Google Scholar 

  138. B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, New cosmological constraints on primordial black holes. Phys. Rev. D81, 104019 (2010). arXiv:0912.5297 [astro-ph.CO]

    Google Scholar 

  139. D. Fixsen, E. Cheng, J. Gales, J.C. Mather, R. Shafer, et al., The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576 (1996). arXiv:astro-ph/9605054 [astro-ph]

    Google Scholar 

  140. A. Kogut, D. Fixsen, D. Chuss, J. Dotson, E. Dwek, et al., The primordial inflation explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations. J. Cosmol. Astropart. Phys. 1107, 025 (2011). arXiv:1105.2044 [astro-ph.CO]

    Google Scholar 

  141. R. Brito, V. Cardoso, P. Pani, Superradiant instability of black holes immersed in a magnetic field. Phys. Rev. D89, 104045 (2014). arXiv:1405.2098 [gr-qc]

    Google Scholar 

  142. Data taken from the McGill Online Magnetar Catalog: www.physics.mcgill.ca/~pulsar/magnetar/main.html

  143. M.J. Rees, Black hole models for active galactic nuclei. Ann. Rev. Astronomy Astrophys. 22(1), 471–506 (1984)

    Article  ADS  Google Scholar 

  144. M.A. Abramowicz, P.C. Fragile, Foundations of black hole accretion disk theory. Living Rev. Relat. 16(1), 1 (2013). http://www.livingreviews.org/lrr-2013-1

  145. J.L. Friedman, Ergosphere instability. Commun. Math. Phys. 63, 243–255 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  146. V. Cardoso, P. Pani, M. Cadoni, M. Cavaglia, Ergoregion instability of ultracompact astrophysical objects. Phys. Rev. D77, 124044 (2008). arXiv:0709.0532 [gr-qc]

    Google Scholar 

  147. V. Cardoso, P. Pani, M. Cadoni, M. Cavaglia, Instability of hyper-compact Kerr-like objects. Class. Quant. Grav. 25, 195010 (2008). arXiv:0808.1615 [gr-qc]

    Google Scholar 

  148. P. Pani, E. Barausse, E. Berti, V. Cardoso, Gravitational instabilities of superspinars. Phys. Rev. D82, 044009 (2010). arXiv:1006.1863 [gr-qc]

    Google Scholar 

  149. C.B. Chirenti, L. Rezzolla, On the ergoregion instability in rotating gravastars. Phys. Rev. D78, 084011 (2008). arXiv:0808.4080 [gr-qc]

    Google Scholar 

  150. G. Moschidis, A proof of Friedman’s Ergosphere instability for scalar waves. Commun. Math. Phys. 358(2), 437–520 (2018). arXiv:1608.02035 [math.AP]

    Google Scholar 

  151. V. Cardoso, L.C.B. Crispino, C.F.B. Macedo, H. Okawa, P. Pani, Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D90, 044069 (2014). arXiv:1406.5510 [gr-qc]

    Google Scholar 

  152. E. Maggio, P. Pani, V. Ferrari, Exotic compact objects and how to quench their ergoregion instability. Phys. Rev. D96(10), 104047 (2017). arXiv:1703.03696 [gr-qc]

    Google Scholar 

  153. E. Maggio, V. Cardoso, S.R. Dolan, P. Pani, Ergoregion instability of exotic compact objects: electromagnetic and gravitational perturbations and the role of absorption. Phys. Rev. D99(6), 064007 (2019). arXiv:1807.08840 [gr-qc]

    Google Scholar 

  154. N. Comins, B.F. Schutz, On the ergoregion instability, Proc. R. Soc. Lond. Ser A Math. Phys. Sci. 364(1717), 211–226 (1978). http://www.jstor.org/stable/79759

    ADS  MathSciNet  Google Scholar 

  155. S. Yoshida, Y. Eriguchi, Ergoregion instability revisited - a new and general method for numerical analysis of stability. Mon. Not. Roy. Astron. Soc. 282, 580–586 (1996)

    Article  ADS  Google Scholar 

  156. A. Tsokaros, M. Ruiz, L. Sun, S.L. Shapiro, K. Uryu, Dynamically stable ergostars exist: general relativistic models and simulations. Phys. Rev. Lett. 123(23), 231103 (2019). arXiv:1907.03765 [gr-qc]

    Google Scholar 

  157. J.M. Lattimer, M. Prakash, D. Masak, A. Yahil, Rapidly rotating pulsars and the equation of state. Astrophys. J. 355, 241–254 (1990)

    Article  ADS  Google Scholar 

  158. N.K. Glendenning, First order phase transitions with more than one conserved charge: consequences for neutron stars. Phys. Rev. D46, 1274–1287 (1992)

    ADS  Google Scholar 

  159. S. Hod, Self-gravitating field configurations: the role of the energy-momentum trace. Phys. Lett. B739, 383 (2014). arXiv:1412.3808 [gr-qc]

    Google Scholar 

  160. S. Koranda, N. Stergioulas, J.L. Friedman, Upper limit set by causality on the rotation and mass of uniformly rotating relativistic stars. Astrophys. J. 488, 799 (1997). arXiv:astro-ph/9608179 [astro-ph]

    Google Scholar 

  161. V. Cardoso, P. Pani, Tests for the existence of black holes through gravitational wave echoes. Nat. Astron. 1(9), 586–591 (2017). arXiv:1709.01525 [gr-qc]

    Google Scholar 

  162. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D98(12), 124009 (2018). arXiv:1809.08238 [gr-qc]

    Google Scholar 

  163. R. Narayan, Black holes in astrophysics. New J. Phys. 7, 199 (2005). arXiv:gr-qc/0506078 [gr-qc]

    Google Scholar 

  164. M.A. Abramowicz, W. Kluzniak, J.-P. Lasota, No observational proof of the black hole event-horizon. Astron. Astrophys. 396, L31–L34 (2002). arXiv:astro-ph/0207270 [astro-ph]

    Google Scholar 

  165. H.A. Buchdahl, General relativistic fluid spheres. Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  166. A.E. Broderick, R. Narayan, On the nature of the compact dark mass at the galactic center. Astrophys. J. 638, L21–L24 (2006). arXiv:astro-ph/0512211 [astro-ph]

    Google Scholar 

  167. A.E. Broderick, R. Narayan, Where are all the gravastars? Limits upon the gravastar model from accreting black holes. Class. Quant. Grav. 24, 659–666 (2007). arXiv:gr-qc/0701154 [GR-QC]

    Google Scholar 

  168. W. Lu, P. Kumar, R. Narayan, Stellar disruption events support the existence of the black hole event horizon. Mon. Not. Roy. Astron. Soc. 468(1), 910–919 (2017). arXiv:1703.00023 [astro-ph.HE]

    Google Scholar 

  169. F.H. Vincent, Z. Meliani, P. Grandclement, E. Gourgoulhon, O. Straub, Imaging a boson star at the Galactic center. Class. Quant. Grav. 33(10), 105015 (2016). arXiv:1510.04170 [gr-qc]

    Google Scholar 

  170. P.V.P. Cunha, C.A.R. Herdeiro, M.J. Rodriguez, Does the black hole shadow probe the event horizon geometry? Phys. Rev. D97(8), 084020 (2018). arXiv:1802.02675 [gr-qc]

    Google Scholar 

  171. N.V. Krishnendu, K.G. Arun, C.K. Mishra, Testing the binary black hole nature of a compact binary coalescence. Phys. Rev. Lett. 119(9), 091101 (2017). arXiv:1701.06318 [gr-qc]

    Google Scholar 

  172. G. Raposo, P. Pani, R. Emparan, Exotic compact objects with soft hair. Phys. Rev. D99(10), 104050 (2019). arXiv:1812.07615 [gr-qc]

    Google Scholar 

  173. N.V. Krishnendu, C.K. Mishra, K.G. Arun, Spin-induced deformations and tests of binary black hole nature using third-generation detectors. Phys. Rev. D99(6), 064008 (2019). arXiv:1811.00317 [gr-qc]

    Google Scholar 

  174. P. Pani, I-Love-Q relations for gravastars and the approach to the black-hole limit. Phys. Rev. D92(12), 124030 (2015). arXiv:1506.06050 [gr-qc]

    Google Scholar 

  175. A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri, V. Ferrari, Probing Planckian corrections at the horizon scale with LISA binaries. Phys. Rev. Lett. 120(8), 081101 (2018). arXiv:1703.10612 [gr-qc]

    Google Scholar 

  176. S. Datta, S. Bose, Probing the nature of central objects in extreme-mass-ratio inspirals with gravitational waves. Phys. Rev. D99(8), 084001 (2019). arXiv:1902.01723 [gr-qc]

    Google Scholar 

  177. S. Datta, R. Brito, S. Bose, P. Pani, S.A. Hughes, Tidal heating as a discriminator for horizons in extreme mass ratio inspirals. Phys. Rev. D101(4), 044004 (2020). arXiv:1910.07841 [gr-qc]

    Google Scholar 

  178. V. Cardoso, E. Franzin, A. Maselli, P. Pani, G. Raposo, Testing strong-field gravity with tidal Love numbers. Phys. Rev. D95(8), 084014 (2017). [Addendum: Phys. Rev. D 95(8), 089901 (2017)]. arXiv:1701.01116 [gr-qc]

    Google Scholar 

  179. N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno, S. Ossokine, Distinguishing Boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems. Phys. Rev. D96(2), 024002 (2017). arXiv:1704.08651 [gr-qc]

    Google Scholar 

  180. P. Pani, A. Maselli, Love in extrema ratio. Int. J. Mod. Phys. D28(14), 1944001 (2019). arXiv:1905.03947 [gr-qc]

    Google Scholar 

  181. P. Pani, E. Berti, V. Cardoso, Y. Chen, R. Norte, Gravitational-wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar. Phys. Rev. D81, 084011 (2010). arXiv:1001.3031 [gr-qc]

    Google Scholar 

  182. C.F. Macedo, P. Pani, V. Cardoso, L.C.B. Crispino, Astrophysical signatures of boson stars: quasinormal modes and inspiral resonances. Phys. Rev. D88(6), 064046 (2013). arXiv:1307.4812 [gr-qc]

    Google Scholar 

  183. M. Kesden, J. Gair, M. Kamionkowski, Gravitational-wave signature of an inspiral into a supermassive horizonless object. Phys. Rev. D71, 044015 (2005). arXiv:astro-ph/0411478 [astro-ph]

    Google Scholar 

  184. P. Pani, E. Berti, V. Cardoso, Y. Chen, R. Norte, Gravitational wave signatures of the absence of an event horizon. I. Nonradial oscillations of a thin-shell gravastar. Phys. Rev. D80, 124047 (2009). arXiv:0909.0287 [gr-qc]

    Google Scholar 

  185. N. Yunes, F. Pretorius, Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-Einsteinian framework. Phys. Rev. D80, 122003 (2009). arXiv:0909.3328 [gr-qc]

    Google Scholar 

  186. N. Yunes, K. Yagi, F. Pretorius, Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys. Rev. D94(8), 084002 (2016). arXiv:1603.08955 [gr-qc]

    Google Scholar 

  187. E. Berti, V. Cardoso, C.M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D73, 064030 (2006). arXiv:gr-qc/0512160 [gr-qc]

    Google Scholar 

  188. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

    Google Scholar 

  189. E. Berti, V. Cardoso, Supermassive black holes or boson stars? Hair counting with gravitational wave detectors. Int. J. Mod. Phys. D15, 2209–2216 (2006). arXiv:gr-qc/0605101 [gr-qc]

    Google Scholar 

  190. LIGO Scientific, Virgo Collaboration, B.P. Abbott, et al., Tests of general relativity with GW150914. Phys. Rev. Lett. 116(22), 221101 (2016). [Erratum: Phys. Rev. Lett.121,no.12,129902(2018)]. http://arxiv.org/abs/1602.03841. arXiv:1602.03841 [gr-qc]

  191. M. Cabero, C.D. Capano, O. Fischer-Birnholtz, B. Krishnan, A.B. Nielsen, A.H. Nitz, C.M. Biwer, Observational tests of the black hole area increase law. Phys. Rev. D97(12), 124069 (2018). arXiv:1711.09073 [gr-qc]

    Google Scholar 

  192. V. Cardoso, E. Franzin, P. Pani, Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116(17), 171101 (2016). arXiv:1602.07309 [gr-qc]

    Google Scholar 

  193. V. Cardoso, S. Hopper, C.F.B. Macedo, C. Palenzuela, P. Pani, Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D94(8), 084031 (2016). arXiv:1608.08637 [gr-qc]

    Google Scholar 

  194. J.L. Friedman, Generic instability of rotating relativistic stars. Commun. Math. Phys. 62(3), 247–278 (1978)

    Article  ADS  Google Scholar 

  195. K.D. Kokkotas, J. Ruoff, N. Andersson, The w-mode instability of ultracompact relativistic stars. Phys. Rev. D70, 043003 (2004). arXiv:astro-ph/0212429 [astro-ph]

    Google Scholar 

  196. L.A. Oliveira, V. Cardoso, L.C.B. Crispino, Ergoregion instability: the hydrodynamic vortex. Phys. Rev. D89, 124008 (2014). arXiv:1405.4038 [gr-qc]

    Google Scholar 

  197. R. Vicente, V. Cardoso, J.C. Lopes, Penrose process, superradiance, and ergoregion instabilities. Phys. Rev. D97(8), 084032 (2018). arXiv:1803.08060 [gr-qc]

    Google Scholar 

  198. P.O. Mazur, E. Mottola, Gravitational condensate stars: an alternative to black holes (2002). arXiv:gr-qc/0109035 [gr-qc]

    Google Scholar 

  199. S.L. Liebling, C. Palenzuela, Dynamical boson stars. Living Rev. Rel. 15, 6 (2012). arXiv:1202.5809 [gr-qc]

    Google Scholar 

  200. R. Brito, V. Cardoso, C.A.R. Herdeiro, E. Radu, Proca stars: gravitating Bose–Einstein condensates of massive spin 1 particles. Phys. Lett. B752, 291–295 (2016). arXiv:1508.05395 [gr-qc]

    Google Scholar 

  201. N. Sanchis-Gual, F. Di Giovanni, M. Zilhao, C. Herdeiro, P. Cerda-Duran, J.A. Font, E. Radu, Non-linear dynamics of spinning bosonic stars: formation and stability. Phys. Rev. Lett. 123(22), 221101 (2019). arXiv:1907.12565 [gr-qc]

    Google Scholar 

  202. Z. Mark, A. Zimmerman, S.M. Du, Y. Chen, A recipe for echoes from exotic compact objects. Phys. Rev. D96(8), 084002 (2017). arXiv:1706.06155 [gr-qc]

    Google Scholar 

  203. E. Barausse, R. Brito, V. Cardoso, I. Dvorkin, P. Pani, The stochastic gravitational-wave background in the absence of horizons. Class. Quant. Grav. 35(20), 20LT01 (2018). arXiv:1805.08229 [gr-qc]

    Google Scholar 

  204. Q. Wang, N. Oshita, N. Afshordi, Echoes from quantum black holes. Phys. Rev. D101(2), 024031 (2020). arXiv:1905.00446 [gr-qc]

    Google Scholar 

  205. N. Oshita, Q. Wang, N. Afshordi, On reflectivity of quantum black hole horizons (2020). arXiv:1905.00464 [hep-th]

    Google Scholar 

  206. B. Guo, S. Hampton, S.D. Mathur, Can we observe fuzzballs or firewalls? J. High Energy Phys. 07, 162 (2018). arXiv:1711.01617 [hep-th]

    Google Scholar 

  207. J. Keir, Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav. 33(13), 135009 (2016). arXiv:1404.7036 [gr-qc]

    Google Scholar 

  208. F.C. Eperon, H.S. Reall, J.E. Santos, Instability of supersymmetric microstate geometries. J. High Energy Phys. 10, 031 (2016). arXiv:1607.06828 [hep-th]

    Google Scholar 

  209. F.C. Eperon, Geodesics in supersymmetric microstate geometries. Class. Quant. Grav. 34(16), 165003 (2017). arXiv:1702.03975 [gr-qc]

    Google Scholar 

  210. P.V.P. Cunha, E. Berti, C.A.R. Herdeiro, Light-ring stability for ultracompact objects. Phys. Rev. Lett. 119(25), 251102 (2017). arXiv:1708.04211 [gr-qc]

    Google Scholar 

  211. F.W. Dyson, The potential of an anchor ring. Phil. Trans. Roy. Soc. 184, 43 (1893)

    ADS  MATH  Google Scholar 

  212. F.W. Dyson, The potential of an anchor ring. Phil. Trans. Roy. Soc. 184A, 1041 (1893)

    ADS  MATH  Google Scholar 

  213. S. Chandrasekhar, E. Fermi, Problems of gravitational stability in the presence of a magnetic field.Astrophys. J. 118, 116 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  214. V. Cardoso, L. Gualtieri, Equilibrium configurations of fluids and their stability in higher dimensions. Class. Quant. Grav. 23, 7151–7198 (2006). arXiv:hep-th/0610004 [hep-th]

    Google Scholar 

  215. L. Lehner, F. Pretorius, Black strings, low viscosity fluids, and violation of cosmic censorship. Phys. Rev. Lett. 105, 101102 (2010). arXiv:1006.5960 [hep-th]

    Google Scholar 

  216. J. Abedi, H. Dykaar, N. Afshordi, Echoes from the Abyss: tentative evidence for Planck-scale structure at black hole horizons. Phys. Rev. D96(8), 082004 (2017). arXiv:1612.00266 [gr-qc]

    Google Scholar 

  217. J. Abedi, H. Dykaar, N. Afshordi, Echoes from the Abyss: the holiday edition! (2017). arXiv:1701.03485 [gr-qc]

    Google Scholar 

  218. H. Nakano, N. Sago, H. Tagoshi, T. Tanaka, Black hole ringdown echoes and howls. Progr. Theoret. Exp. Phys. 2017(7), 071E01 (2017). arXiv:1704.07175 [gr-qc]

    Google Scholar 

  219. A. Testa, P. Pani, Analytical template for gravitational-wave echoes: signal characterization and prospects of detection with current and future interferometers. Phys. Rev. D98(4), 044018 (2018). arXiv:1806.04253 [gr-qc]

    Google Scholar 

  220. E. Maggio, A. Testa, S. Bhagwat, P. Pani, Analytical model for gravitational-wave echoes from spinning remnants. Phys. Rev. D100(6), 064056 (2019). arXiv:1907.03091 [gr-qc]

    Google Scholar 

  221. L.F.L. Micchi, C. Chirenti, Spicing up the recipe for echoes from exotic compact objects: orbital differences and corrections in rotating backgrounds (2020). arXiv:1912.05419 [gr-qc]

    Google Scholar 

  222. P. Bueno, P.A. Cano, F. Goelen, T. Hertog, B. Vercnocke, Echoes of Kerr-like wormholes. Phys. Rev. D97(2), 024040 (2018). arXiv:1711.00391 [gr-qc]

    Google Scholar 

  223. M.R. Correia, V. Cardoso, Characterization of echoes: a Dyson-series representation of individual pulses. Phys. Rev. D97(8), 084030 (2018). arXiv:1802.07735 [gr-qc]

    Google Scholar 

  224. R.S. Conklin, B. Holdom, J. Ren, Gravitational wave echoes through new windows. Phys. Rev. D98(4), 044021 (2018). arXiv:1712.06517 [gr-qc]

    Google Scholar 

  225. R.S. Conklin, B. Holdom, Gravitational wave echo spectra. Phys. Rev. D100(12), 124030 (2019). arXiv:1905.09370 [gr-qc]

    Google Scholar 

  226. J. Westerweck, A. Nielsen, O. Fischer-Birnholtz, M. Cabero, C. Capano, T. Dent, B. Krishnan, G. Meadors, A.H. Nitz, Low significance of evidence for black hole echoes in gravitational wave data. Phys. Rev. D97(12), 124037 (2018). arXiv:1712.09966 [gr-qc]

    Google Scholar 

  227. K.W. Tsang, M. Rollier, A. Ghosh, A. Samajdar, M. Agathos, K. Chatziioannou, V. Cardoso, G. Khanna, C. Van Den Broeck, A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes. Phys. Rev. D98(2), 024023 (2018). arXiv:1804.04877 [gr-qc]

    Google Scholar 

  228. A.B. Nielsen, C.D. Capano, O. Birnholtz, J. Westerweck, Parameter estimation and statistical significance of echoes following black hole signals in the first advanced LIGO observing run. Phys. Rev. D99(10), 104012 (2019). arXiv:1811.04904 [gr-qc]

    Google Scholar 

  229. R.K.L. Lo, T.G.F. Li, A.J. Weinstein, Template-based gravitational-wave echoes search using Bayesian model election. Phys. Rev. D99(8), 084052 (2019). arXiv:1811.07431 [gr-qc]

    Google Scholar 

  230. N. Uchikata, H. Nakano, T. Narikawa, N. Sago, H. Tagoshi, T. Tanaka, Searching for black hole echoes from the LIGO-Virgo catalog GWTC-1. Phys. Rev. D100(6), 062006 (2019). arXiv:1906.00838 [gr-qc]

    Google Scholar 

  231. N. Oshita, D. Tsuna, N. Afshordi, Quantum black hole seismology I: echoes, ergospheres, and spectra (2020). arXiv:2001.11642 [gr-qc]

    Google Scholar 

  232. J. Abedi, N. Afshordi, N. Oshita, Q. Wang, Quantum black holes in the sky (2020). arXiv:2001.09553 [gr-qc]

    Google Scholar 

  233. J.B. Hartle, Tidal friction in slowly rotating black holes. Phys. Rev. D8, 1010–1024 (1973)

    ADS  Google Scholar 

  234. S.A. Hughes, Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational wave emission. 2. Inspiral trajectories and gravitational wave forms. Phys.Rev. D64, 064004 (2001). arXiv:gr-qc/0104041 [gr-qc]

    Google Scholar 

  235. T. Damour’s, Contribution to the Proceedings of the Second Marcel Grossmann Meeting of General Relativity, ed. by R. Ruffini (North Holland, Amsterdam, 1982), pp 587–608

    Google Scholar 

  236. E. Poisson, Tidal interaction of black holes and Newtonian viscous bodies. Phys. Rev. D80, 064029 (2009). arXiv:0907.0874 [gr-qc]

    Google Scholar 

  237. V. Cardoso, P. Pani, Tidal acceleration of black holes and superradiance. Class. Quant. Grav. 30, 045011 (2013). arXiv:1205.3184 [gr-qc]

    Google Scholar 

  238. K. Alvi, Energy and angular momentum flow into a black hole in a binary. Phys. Rev. D64, 104020 (2001). arXiv:gr-qc/0107080 [gr-qc]

    Google Scholar 

  239. E. Poisson, Absorption of mass and angular momentum by a black hole: time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation. Phys. Rev. D70, 084044 (2004). arXiv:gr-qc/0407050 [gr-qc]

    Google Scholar 

  240. L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Rel. 9, 4 (2006)

    Article  Google Scholar 

  241. S. Datta, Tidal heating of Quantum black holes and their imprints on gravitational waves (2020). arXiv:2002.04480 [gr-qc]

    Google Scholar 

  242. R. Blandford, D. Payne, Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. Roy. Astron. Soc. 199, 883 (1982)

    Article  ADS  Google Scholar 

  243. R. Blandford, R. Znajek, Electromagnetic extractions of energy from Kerr black holes. Mon. Not. Roy. Astron. Soc. 179, 433–456 (1977)

    Article  ADS  Google Scholar 

  244. S. Komissarov, Blandford-Znajek mechanism versus Penrose process. J. Korean Phys. Soc. 54, 2503–2512 (2009). arXiv:0804.1912 [astro-ph]

    Google Scholar 

  245. J.P. Lasota, E. Gourgoulhon, M. Abramowicz, A. Tchekhovskoy, R. Narayan, Extracting black-hole rotational energy: the generalized Penrose process. Phys. Rev. D89, 024041 (2014). arXiv:1310.7499 [gr-qc]

    Google Scholar 

  246. S. Kinoshita, T. Igata, The essence of the Blandford Znajek process. Prog. Theor. Exp. Phys. 2018(3), 033E02 (2018). arXiv:1710.09152 [gr-qc]

    Google Scholar 

  247. S. Noda, Y. Nambu, T. Tsukamoto, M. Takahashi, Blandford-Znajek process as Alfvenic superradiance. Phys. Rev. D101(2), 023003 (2020). arXiv:1909.04795 [gr-qc]

    Google Scholar 

  248. D. MacDonald, K. Thorne, Black-hole electrodynamics - an absolute-space/universal-time formulation. Mon. Not. Roy. Astron. Soc. 198, 345–383 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  249. A. Tchekhovskoy, J.C. McKinney, R. Narayan, General relativistic modeling of magnetized jets from accreting black holes. J. Phys. Conf. Ser. 372, 012040 (2012). arXiv:1202.2864 [astro-ph.HE]

    Google Scholar 

  250. J.C. McKinney, A. Tchekhovskoy, R.D. Blandford, General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. Roy. Astron. Soc. 423, 3083 (2012). arXiv:1201.4163 [astro-ph.HE]

    Google Scholar 

  251. R.F. Penna, R. Narayan, A. Sadowski, General relativistic magnetohydrodynamic simulations of Blandford-Znajek jets and the membrane paradigm. Mon. Not. Roy. Astron. Soc. 436, 3741 (2013). arXiv:1307.4752 [astro-ph.HE]

    Google Scholar 

  252. R.M. Wald, Black hole in a uniform magnetic field. Phys. Rev. D10, 1680–1685 (1974)

    ADS  Google Scholar 

  253. R.L. Znajek, Black hole electrodynamics and the Carter tetrad. Mon. Not. R. astr. Soc. 179, 457–472 (1977)

    Article  ADS  Google Scholar 

  254. S.E. Gralla, T. Jacobson, Spacetime approach to force-free magnetospheres. Mon. Not. Roy. Astron. Soc. 445, 2500 (2014). arXiv:1401.6159 [astro-ph.HE]

    Google Scholar 

  255. A. Lupsasca, M.J. Rodriguez, A. Strominger, Force-free electrodynamics around extreme Kerr black holes. J. High Energy Phys. 1412, 185 (2014). arXiv:1406.4133 [hep-th]

    Google Scholar 

  256. A. Lupsasca, M.J. Rodriguez, Exact solutions for extreme black hole magnetospheres. J. High Energy Phys. 07, 090 (2015). arXiv:1412.4124 [hep-th]

    Google Scholar 

  257. F. Zhang, H. Yang, L. Lehner, Towards an understanding of the force-free magnetosphere of rapidly spinning black holes. Phys. Rev. D90(12), 124009 (2014). arXiv:1409.0345 [astro-ph.HE]

    Google Scholar 

  258. H. Li, C. Yu, J. Wang, Z. Xu, Force-free magnetosphere on near-horizon geometry of near-extreme Kerr black holes. Phys. Rev. D92(2), 023009 (2015). arXiv:1403.6959 [gr-qc]

    Google Scholar 

  259. H. Yang, F. Zhang, Stability of force-free magnetospheres. Phys. Rev. D90(10), 104022 (2014). arXiv:1406.4602 [astro-ph.HE]

    Google Scholar 

  260. S. Komissarov, Electrodynamics of black hole magnetospheres. Mon. Not. Roy. Astron. Soc. 350, 407 (2004). arXiv:astro-ph/0402403 [astro-ph]

    Google Scholar 

  261. J.C. McKinney, General relativistic force-free electrodynamics: a new code and applications to black hole magnetospheres. Mon. Not. Roy. Astron. Soc. 367, 1797–1807 (2006). arXiv:astro-ph/0601410 [astro-ph]

    Google Scholar 

  262. A. Tchekhovskoy, J.C. McKinney, R. Narayan, Simulations of ultrarelativistic magnetodynamic jets from Gamma-ray burst engines. Mon. Not. Roy. Astron. Soc. 388, 551 (2008). arXiv:0803.3807 [astro-ph]

    Google Scholar 

  263. C. Palenzuela, T. Garrett, L. Lehner, S.L. Liebling, Magnetospheres of black hole systems in force-free plasma. Phys. Rev. D82, 044045 (2010). arXiv:1007.1198 [gr-qc]

    Google Scholar 

  264. M. Parikh, F. Wilczek, An action for black hole membranes. Phys. Rev. D58, 064011 (1998). arXiv:gr-qc/9712077 [gr-qc]

    Google Scholar 

  265. K.S. Thorne, R. Price, D. Macdonald, Black Holes: The Membrane Paradigm (Yale University Press, New Haven 1986)

    MATH  Google Scholar 

  266. A. Tchekhovskoy, R. Narayan, J.C. McKinney, Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. Roy. Astron. Soc. 418, L79–L83 (2011). arXiv:1108.0412 [astro-ph.HE]

    Google Scholar 

  267. P. Goldreich, W.H. Julian, Pulsar electrodynamics. Astrophys. J. 157, 869 (1969)

    Article  ADS  Google Scholar 

  268. M. Ruderman, P. Sutherland, Theory of pulsars: polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51 (1975)

    Article  ADS  Google Scholar 

  269. P. Goldreich, D. Lynden-Bell, Io, a jovian unipolar inductor. Astrophys. J. 156, 59–78 (1969)

    Article  ADS  Google Scholar 

  270. L. Susskind, L. Thorlacius, J. Uglum, The stretched horizon and black hole complementarity. Phys. Rev. D48, 3743–3761 (1993). arXiv:hep-th/9306069 [hep-th]

    Google Scholar 

  271. K. Toma, F. Takahara, Electromotive force in the Blandford-Znajek process. Mon. Not. Roy. Astron. Soc. 442, 2855 (2014). arXiv:1405.7437 [astro-ph.HE]

    Google Scholar 

  272. M. Ruiz, C. Palenzuela, F. Galeazzi, C. Bona, The role of the ergosphere in the Blandford-Znajek process. Mon. Not. Roy. Astron. Soc. 423, 1300–1308 (2012). arXiv:1203.4125 [gr-qc]

    Google Scholar 

  273. S. Chandrasekhar, Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett. 24, 611–615 (1970)

    Article  ADS  Google Scholar 

  274. J.L. Friedman, B.F. Schutz, Lagrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 221, 937–957 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  275. N. Stergioulas, Rotating stars in relativity. Living Rev. Rel. 6, 3 (2003). arXiv:gr-qc/0302034 [gr-qc]

    Google Scholar 

  276. N. Andersson, G. Comer, Relativistic fluid dynamics: physics for many different scales. Living Rev. Rel. 10, 1 (2007). arXiv:gr-qc/0605010 [gr-qc]

    Google Scholar 

  277. J.L. Friedman, N. Stergioulas, Rotating Relativistic Stars (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  278. J.L. Friedman, B.F. Schutz, On the stability of relativistic systems. Astrophys. J. 200, 204–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  279. J. Friedman, B.F. Schutz, Secular instability of rotating Newtonian stars. Astrophys. J. 222, 281 (1978)

    Article  ADS  Google Scholar 

  280. N. Andersson, A new class of unstable modes of rotating relativistic stars. Astrophys. J. 502, 708–713 (1998). arXiv:gr-qc/9706075 [gr-qc]

    Google Scholar 

  281. N. Andersson, K.D. Kokkotas, The R mode instability in rotating neutron stars. Int. J. Mod. Phys. D10, 381–442 (2001). arXiv:gr-qc/0010102 [gr-qc]

    Google Scholar 

  282. P. Pani, Advanced methods in black-hole perturbation theory. Int. J. Mod. Phys. A28, 1340018 (2013). arXiv:1305.6759 [gr-qc]

    Google Scholar 

  283. V. Cardoso, I.P. Carucci, P. Pani, T.P. Sotiriou, Black holes with surrounding matter in scalar-tensor theories. Phys. Rev. Lett. 111, 111101 (2013). arXiv:1308.6587 [gr-qc]

    Google Scholar 

  284. A. Dima, E. Barausse, Numerical investigation of plasma-driven superradiant instabilities (2020). arXiv:2001.11484 [gr-qc]

    Google Scholar 

  285. M. Visser, Lorentzian Wormholes: From Einstein to Hawking (AIP Press, American Institute of Physics, College Park, 1995)

    Google Scholar 

  286. R.F. Penna, Black hole Meissner effect and Blandford-Znajek jets. Phys. Rev. D89(10), 104057 (2014). arXiv:1403.0938 [astro-ph.HE]

    Google Scholar 

  287. D. Neilsen, L. Lehner, C. Palenzuela, E.W. Hirschmann, S.L. Liebling, et al., Boosting jet power in black hole spacetimes. Proc. Nat. Acad. Sci. 108, 12641–12646 (2011). arXiv:1012.5661 [astro-ph.HE]

    Google Scholar 

  288. C. Palenzuela, L. Lehner, S.L. Liebling, Dual jets from binary black holes. Science 329, 927 (2010). arXiv:1005.1067 [astro-ph.HE]

    Google Scholar 

  289. M. Lyutikov, Schwarzschild black holes as unipolar inductors: expected electromagnetic power of a merger. Phys. Rev. D83, 064001 (2011). arXiv:1101.0639 [astro-ph.HE]

    Google Scholar 

  290. S.T. McWilliams, J. Levin, Electromagnetic extraction of energy from black hole-neutron star binaries. Astrophys. J. 742, 90 (2011). arXiv:1101.1969 [astro-ph.HE]

    Google Scholar 

  291. W.H. Press, Table-top model for black hole electromagnetic instabilities, in Frontiers Science Series 23: Black Holes and High Energy Astrophysics, ed. by H. Sato, N. Sugiyama (1998), p. 235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brito, R., Cardoso, V., Pani, P. (2020). Black Hole Superradiance in Astrophysics. In: Superradiance. Lecture Notes in Physics, vol 971. Springer, Cham. https://doi.org/10.1007/978-3-030-46622-0_5

Download citation

Publish with us

Policies and ethics