Skip to main content

Carotenoids as Antiobesity Agents

  • Chapter
  • First Online:
Carotenoids: Structure and Function in the Human Body

Abstract

Ingestion of calorie-rich foods, sedentary life-style counpled with energy disparity is leading towards obesity and related complications in humans. Many preclinical and clinical studies confirm anti-obesity properties of functional foods lie carotenoids. This chapter highlights recent information on the importance of carotenoids and its various metabolites in management of obesity and related disorders. Their role in management of oxidative stress, control of key transcription markers and their suppressive action on different obesity factors both in vivo and invitro support these studies. Adipose tissue is major storage organ of carotenoids and is pivotal in pathogenesis of obesity. Brain also has a significant role in obesity mechnaims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Organization WH (2017) 10 facts on obesity. WHO. https://www.who.int/features/factfiles/obesity/en/. Accessed 25 Mar 2020

  2. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787. https://doi.org/10.1038/nature06902

    Article  CAS  PubMed  Google Scholar 

  3. Bonet ML, Canas JA, Ribot J, Palou A (2016) Carotenoids in adipose tissue biology and obesity. In: Carotenoids in nature. Springer, Cham, pp 377–414

    Google Scholar 

  4. Takayanagi K, Morimoto S-i, Shirakura Y, Mukai K, Sugiyama T, Tokuji Y et al (2011) Mechanism of visceral fat reduction in Tsumura Suzuki obese, diabetes (TSOD) mice orally administered β-cryptoxanthin from Satsuma mandarin oranges (Citrus unshiu Marc). J Agric Food Chem 59(23):12342–12351

    CAS  PubMed  Google Scholar 

  5. Fenni S, Hammou H, Astier J, Bonnet L, Karkeni E, Couturier C et al (2017) Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res 61(9):1601083

    Google Scholar 

  6. Ikeuchi M, Koyama T, Takahashi J, Yazawa K (2007) Effects of astaxanthin in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 71(4):893–899

    CAS  PubMed  Google Scholar 

  7. Liu M, Liu H, Xie J, Xu Q, Pan C, Wang J et al (2017) Anti-obesity effects of zeaxanthin on 3T3-L1 preadipocyte and high fat induced obese mice. Food Funct 8(9):3327–3338

    CAS  PubMed  Google Scholar 

  8. Seca AM, Pinto DC (2018) Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar Drugs 16(7):237

    PubMed Central  Google Scholar 

  9. Asemi Z, Alizadeh S-A, Ahmad K, Goli M, Esmaillzadeh A (2016) Effects of beta-carotene fortified synbiotic food on metabolic control of patients with type 2 diabetes mellitus: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 35(4):819–825

    CAS  PubMed  Google Scholar 

  10. Ojulari OV, Lee SG, Nam J-O (2020) Therapeutic effect of seaweed derived Xanthophyl carotenoid on obesity management; overview of the last decade. Int J Mol Sci 21(7):2502

    CAS  PubMed Central  Google Scholar 

  11. Alvarez R, de Andrés J, Yubero P, Viñas O, Mampel T, Iglesias R et al (1995) A novel regulatory pathway of brown fat thermogenesis retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene. J Biol Chem 270(10):5666–5673

    CAS  PubMed  Google Scholar 

  12. Lobo GP, Amengual J, Li HNM, Golczak M, Bonet ML, Palczewski K et al (2010) β, β-carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β, β-carotene oxygenase 1-dependent manner. J Biol Chem 285(36):27891–27899

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Amengual J, Gouranton E, van Helden YG, Hessel S, Ribot J, Kramer E et al (2011) Beta-carotene reduces body adiposity of mice via BCMO1. PloS One 6(6):e20644

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwarz EJ, Reginato MJ, Shao D, Krakow SL, Lazar MA (1997) Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol Cell Biol 17(3):1552–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mercader J, Ribot J, Murano I, Felipe F, Cinti S, Bonet ML et al (2006) Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology 147(11):5325–5332

    CAS  PubMed  Google Scholar 

  16. Wang B, Fu X, Liang X, Deavila JM, Wang Z, Zhao L et al (2017) Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRα+ adipose progenitors. Cell Discov 3(1):1–14

    Google Scholar 

  17. Serra F, Bonet M, Puigserver P, Oliver J, Palou A (1999) Stimulation of uncoupling protein 1 expression in brown adipocytes by naturally occurring carotenoids. Int J Obes 23(6):650–655

    CAS  Google Scholar 

  18. Relevy NZ, Bechor S, Harari A, Ben-Amotz A, Kamari Y, Harats D et al (2015) The inhibition of macrophage foam cell formation by 9-cis β-carotene is driven by BCMO1 activity. PLoS One 10(1):e0115272

    Google Scholar 

  19. Östh M, Öst A, Kjolhede P, Strålfors P (2014) The concentration of β-carotene in human adipocytes, but not the whole-body adipocyte stores, is reduced in obesity. PLoS One 9(1):e85610

    PubMed  PubMed Central  Google Scholar 

  20. Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N (2012) Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 61(5):1112–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mercader J, Madsen L, Felipe F, Palou A, Kristiansen K, Bonet L (2007) All-trans retinoic acid increases oxidative metabolism in mature adipocytes. Cell Physiol Biochem 20(6):1061–1072

    CAS  PubMed  Google Scholar 

  22. Bonet M, Ribot J, Felipe F, Palou A (2003) Vitamin A and the regulation of fat reserves. Cell Mol Life Sci 60(7):1311–1321

    CAS  PubMed  Google Scholar 

  23. Amengual J, García-Carrizo FJ, Arreguín A, Mušinović H, Granados N, Palou A et al (2018) Retinoic acid increases fatty acid oxidation and irisin expression in skeletal muscle cells and impacts irisin in vivo. Cell Physiol Biochem 46(1):187–202

    CAS  PubMed  Google Scholar 

  24. Amengual J, Petrov P, Bonet ML, Ribot J, Palou A (2012) Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells. Int J Biochem Cell Biol 44(11):2019–2027

    CAS  PubMed  Google Scholar 

  25. Amengual J, Ribot J, Bonet ML, Palou A (2010) Retinoic acid treatment enhances lipid oxidation and inhibits lipid biosynthesis capacities in the liver of mice. Cell Physiol Biochem 25(6):657–666

    CAS  PubMed  Google Scholar 

  26. Amengual J, Ribot J, Bonet ML, Palou A (2008) Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice. Obesity 16(3):585–591

    CAS  PubMed  Google Scholar 

  27. Granados N, Amengual J, Ribot J, Musinovic H, Ceresi E, Von Lintig J et al (2013) Vitamin A supplementation in early life affects later response to an obesogenic diet in rats. Int J Obes 37(9):1169–1176

    CAS  Google Scholar 

  28. Bonet ML, Ribot J, Palou A (2012) Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 1821(1):177–189

    CAS  Google Scholar 

  29. Bonet M, Oliver J, Pico C, Felipe F, Ribot J, Cinti S et al (2000) Opposite effects of feeding a vitamin A-deficient diet and retinoic acid treatment on brown adipose tissue uncoupling protein 1 (UCP1), UCP2 and leptin expression. J Endocrinol 166(3):511–517

    CAS  PubMed  Google Scholar 

  30. Felipe F, Bonet ML, Ribot J, Palou A (2004) Modulation of resistin expression by retinoic acid and vitamin A status. Diabetes 53(4):882–889

    CAS  PubMed  Google Scholar 

  31. Murholm M, Isidor MS, Basse AL, Winther S, Sørensen C, Skovgaard-Petersen J et al (2013) Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biol 14(1):41

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mercader J, Palou A, Bonet ML (2010) Induction of uncoupling protein-1 in mouse embryonic fibroblast-derived adipocytes by retinoic acid. Obesity 18(4):655–662

    CAS  PubMed  Google Scholar 

  33. Tourniaire F, Musinovic H, Gouranton E, Astier J, Marcotorchino J, Arreguin A et al (2015) All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes. J Lipid Res 56(6):1100–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  34. van Helden YG, Godschalk RW, von Lintig J, Lietz G, Landrier JF, Luisa Bonet M et al (2011) Gene expression response of mouse lung, liver and white adipose tissue to β-carotene supplementation, knockout of Bcmo1 and sex. Mol Nutr Food Res 55(10):1466–1474

    PubMed  Google Scholar 

  35. Kameji H, Mochizuki K, Miyoshi N, Goda T (2010) β-Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-α. Nutrition 26(11–12):1151–1156

    CAS  PubMed  Google Scholar 

  36. Murano I, Morroni M, Zingaretti MC, Oliver P, Sánchez J, Fuster A et al (2005) Morphology of ferret subcutaneous adipose tissue after 6-month daily supplementation with oral beta-carotene. Biochim Biophys Acta Mol Cell Biol Lipids 1740(2):305–312

    CAS  Google Scholar 

  37. Sánchez J, Fuster A, Oliver P, Palou A, Picó C (2009) Effects of β-carotene supplementation on adipose tissue thermogenic capacity in ferrets (Mustela putorius furo). Br J Nutr 102(11):1686–1694

    PubMed  Google Scholar 

  38. Kawada T, Kamei Y, Fujita A, Hida Y, Takahashi N, Sugimoto E et al (2000) Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors. Biofactors 13(1–4):103–109

    CAS  PubMed  Google Scholar 

  39. Reichert B, Yasmeen R, Jeyakumar SM, Yang F, Thomou T, Alder H et al (2011) Concerted action of aldehyde dehydrogenases influences depot-specific fat formation. Mol Endocrinol 25(5):799–809

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuri-Harcuch W (1982) Differentiation of 3T3-F442A cells into adipocytes is inhibited by retinoic acid. Differentiation 23(1–3):164–169

    CAS  PubMed  Google Scholar 

  41. Berry DC, Noy N (2009) All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor β/δ and retinoic acid receptor. Mol Cell Biol 29(12):3286–3296

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Murray T, Russell TR (1980) Inhibition of adipose conversion in 3T3-L2 cells by retinoic acid. J Supramol Struct 14(2):255–266

    CAS  PubMed  Google Scholar 

  43. Xue J-C, Schwarz EJ, Chawla A, Lazar MA (1996) Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma. Mol Cell Biol 16(4):1567–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Safonova I, Darimont C, Amri E-Z, Grimaldi P, Ailhaud G, Reichert U et al (1994) Retinoids are positive effectors of adipose cell differentiation. Mol Cell Endocrinol 104(2):201–211

    CAS  PubMed  Google Scholar 

  45. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J et al (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13(6):695–702

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kiefer FW, Vernochet C, O’brien P, Spoerl S, Brown JD, Nallamshetty S et al (2012) Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat Med 18(6):918

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribot J, Felipe F, Bonet ML, Palou A (2001) Changes of adiposity in response to vitamin A status correlate with changes of PPARγ2 expression. Obes Res 9(8):500–509

    CAS  PubMed  Google Scholar 

  48. Esteban-Pretel G, Marín MP, Cabezuelo F, Moreno V, Renau-Piqueras J, Timoneda J et al (2010) Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats. J Nutr 140(4):792–798

    CAS  PubMed  Google Scholar 

  49. Bairras C, Menard L, Redonnet A, Ferrand C, Delage B, Noel-Suberville C et al (2005) Effect of vitamin A content in cafeteria diet on the expression of nuclear receptors in rat subcutaneous adipose tissue. J Physiol Biochem 61(2):353

    CAS  PubMed  Google Scholar 

  50. Gorocica-Buenfil M, Fluharty F, Bohn T, Schwartz S, Loerch SC (2007) Effect of low vitamin A diets with high-moisture or dry corn on marbling and adipose tissue fatty acid composition of beef steers. J Anim Sci 85(12):3355–3366

    CAS  PubMed  Google Scholar 

  51. Sakamuri VPS, Ananthathmakula P, Veettil GN, Ayyalasomayajula V (2011) Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats. Nutr J 10(1):70

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar MV, Sunvold GD, Scarpace PJ (1999) Dietary vitamin A supplementation in rats: suppression of leptin and induction of UCP1 mRNA. J Lipid Res 40(5):824–829

    CAS  PubMed  Google Scholar 

  53. Dave S, Nanduri R, Dkhar HK, Bhagyaraj E, Rao A, Gupta P (2014) Nuclear MEK1 sequesters PPARγ and bisects MEK1/ERK signaling: a non-canonical pathway of retinoic acid inhibition of adipocyte differentiation. PloS One 9(6):e100862

    PubMed  PubMed Central  Google Scholar 

  54. Ziouzenkova O, Orasanu G, Sukhova G, Lau E, Berger JP, Tang G et al (2007) Asymmetric cleavage of β-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol 21(1):77–88

    CAS  PubMed  Google Scholar 

  55. Marchildon F, St-Louis C, Akter R, Roodman V, Wiper-Bergeron NL (2010) Transcription factor Smad3 is required for the inhibition of adipogenesis by retinoic acid. J Biol Chem 285(17):13274–13284

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dani C, Smith A, Dessolin S, Leroy P, Staccini L, Villageois P et al (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110(11):1279–1285

    CAS  PubMed  Google Scholar 

  57. Bost F, Caron L, Marchetti I, Dani C, Marchand-Brustel YL, Binétruy B (2002) Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 361(3):621–627

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312

    CAS  PubMed  Google Scholar 

  59. Stofkova A (2010) Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity. Endocr Regul 44(1):25–36

    CAS  PubMed  Google Scholar 

  60. Stofkova A (2009) Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocr Regul 43(4):157–168

    CAS  PubMed  Google Scholar 

  61. Huang K, Lin R, Kormas N, Lee L, Chen C, Gill T et al (2004) Plasma leptin is associated with insulin resistance independent of age, body mass index, fat mass, lipids, and pubertal development in nondiabetic adolescents. Int J Obes 28(4):470–475

    CAS  Google Scholar 

  62. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436(7049):356–362

    CAS  PubMed  Google Scholar 

  63. Esteve E, Ricart W, Fernández-Real JM (2009) Adipocytokines and insulin resistance: the possible role of lipocalin-2, retinol binding protein-4, and adiponectin. Diabetes Care 32(suppl 2):S362–S3S7

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hollung K, Rise CP, Drevon CA, Reseland JE (2004) Tissue-specific regulation of leptin expression and secretion by all-trans retinoic acid. J Cell Biochem 92(2):307–315

    CAS  PubMed  Google Scholar 

  65. Mercader J, Granados N, Bonet L, Palou A (2008) All-trans retinoic acid decreases murine adipose retinol binding protein 4 production. Cell Physiol Biochem 22(1–4):363–372

    CAS  PubMed  Google Scholar 

  66. Sliwa A, Góralska J, Czech U, Gruca A, Polus A, Zapała B et al (2012) Modulation of the human preadipocyte mitochondrial activity by beta-carotene. Acta Biochim Pol 59(1):39–41

    CAS  PubMed  Google Scholar 

  67. Beppu F, Hosokawa M, Niwano Y, Miyashita K (2012) Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-A y mice. Lipids Health Dis 11(1):112

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Okada T, Nakai M, Maeda H, Hosokawa M, Sashima T, Miyashita K (2008) Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. J Oleo Sci 57(6):345–351

    CAS  PubMed  Google Scholar 

  69. Arunkumar E, Bhuvaneswari S, Anuradha CV (2012) An intervention study in obese mice with astaxanthin, a marine carotenoid–effects on insulin signaling and pro-inflammatory cytokines. Food Funct 3(2):120–126

    CAS  PubMed  Google Scholar 

  70. Shirakura Y, Takayanagi K, Mukai K, Tanabe H, Inoue M (2011) β-Cryptoxanthin suppresses the adipogenesis of 3T3-L1 cells via RAR activation. J Nutr Sci Vitaminol 57(6):426–431

    CAS  PubMed  Google Scholar 

  71. Goto T, Kim YI, Takahashi N, Kawada T (2013) Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors. Mol Nutr Food Res 57(1):20–33

    CAS  PubMed  Google Scholar 

  72. Inoue M, Tanabe H, Matsumoto A, Takagi M, Umegaki K, Amagaya S et al (2012) Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor γ modulator in adipocytes and macrophages. Biochem Pharmacol 84(5):692–700

    CAS  PubMed  Google Scholar 

  73. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332(2):392–397

    CAS  PubMed  Google Scholar 

  74. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2007) Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci 56(12):615–621

    CAS  PubMed  Google Scholar 

  75. Maeda H, Hosokawa M, Sashima T, Miyashita K (2007) Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem 55(19):7701–7706

    CAS  PubMed  Google Scholar 

  76. Hosokawa M, Miyashita T, Nishikawa S, Emi S, Tsukui T, Beppu F et al (2010) Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch Biochem Biophys 504(1):17–25

    CAS  PubMed  Google Scholar 

  77. Beppu F, Hosokawa M, Yim M-J, Shinoda T, Miyashita K (2013) Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-Ay mice. Lipids 48(5):449–455. https://doi.org/10.1007/s11745-013-3784-4

    Article  CAS  PubMed  Google Scholar 

  78. Maeda H, Hosokawa M, Sashima T, Takahashi N, Kawada T, Miyashita K (2006) Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int J Mol Med 18(1):147–152

    CAS  PubMed  Google Scholar 

  79. Maeda H, Hosokawa M, Sashima T, Murakami-Funayama K, Miyashita K (2009) Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol Med Rep 2(6):897–902

    CAS  PubMed  Google Scholar 

  80. Airanthi MW-A, Sasaki N, Iwasaki S, Baba N, Abe M, Hosokawa M et al (2011) Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver. J Agric Food Chem 59(8):4156–4163

    CAS  PubMed  Google Scholar 

  81. Hu X, Li Y, Li C, Fu Y, Cai F, Chen Q et al (2012) Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys 519(1):59–65

    CAS  PubMed  Google Scholar 

  82. Beppu F, Hosokawa M, Yim M-J, Shinoda T, Miyashita K (2013) Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A y mice. Lipids 48(5):449–455

    CAS  PubMed  Google Scholar 

  83. Kang S-I, Shin H-S, Kim H-M, Yoon S-A, Kang S-W, Kim J-H et al (2012) Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase. J Agric Food Chem 60(13):3389–3395

    CAS  PubMed  Google Scholar 

  84. Abidov M, Ramazanov Z, Seifulla R, Grachev S (2010) The effects of Xanthigen™ in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab 12(1):72–81

    CAS  PubMed  Google Scholar 

  85. Woo M-N, Jeon S-M, Kim H-J, Lee M-K, Shin S-K, Shin YC et al (2010) Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact 186(3):316–322

    CAS  PubMed  Google Scholar 

  86. Jeon SM, Kim HJ, Woo MN, Lee MK, Shin YC, Park YB et al (2010) Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J 5(9):961–969

    CAS  PubMed  Google Scholar 

  87. Ha AW, Kim WK (2013) The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet. Nutr Res Pract 7(4):287–293

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Matanjun P, Mohamed S, Muhammad K, Mustapha NM (2010) Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J Med Food 13(4):792–800

    CAS  PubMed  Google Scholar 

  89. Yoshida H, Yanai H, Ito K, Tomono Y, Koikeda T, Tsukahara H et al (2010) Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis 209(2):520–523

    CAS  PubMed  Google Scholar 

  90. Yang Y, Pham TX, Wegner CJ, Kim B, Ku CS, Park Y-K et al (2014) Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice. Br J Nutr 112(11):1797–1804

    CAS  PubMed  Google Scholar 

  91. Yang Y, Seo JM, Nguyen A, Pham TX, Park HJ, Park Y et al (2011) Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice. J Nutr 141(9):1611–1617

    CAS  PubMed  Google Scholar 

  92. Choi HD, Kim JH, Chang MJ, Kyu-Youn Y, Shin WG (2011) Effects of astaxanthin on oxidative stress in overweight and obese adults. Phytother Res 25(12):1813–1818

    CAS  PubMed  Google Scholar 

  93. Bhuvaneswari S, Arunkumar E, Viswanathan P, Anuradha CV (2010) Astaxanthin restricts weight gain, promotes insulin sensitivity and curtails fatty liver disease in mice fed a obesity-promoting diet. Process Biochem 45(8):1406–1414

    CAS  Google Scholar 

  94. Chuyen HV, Eun J-B (2017) Marine carotenoids: bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr 57(12):2600–2610

    CAS  PubMed  Google Scholar 

  95. Miyashita K, Hosokawa M (2017) Fucoxanthin in the management of obesity and its related disorders. J Funct Foods 36:195–202

    CAS  Google Scholar 

  96. Peng J, Yuan J-P, Wu C-F, Wang J-H (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9(10):1806–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Riccioni G, D’Orazio N, Franceschelli S, Speranza L (2011) Marine carotenoids and cardiovascular risk markers. Mar Drugs 9(7):1166–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gammone MA, D’Orazio N (2015) Anti-obesity activity of the marine carotenoid fucoxanthin. Mar Drugs 13(4):2196–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Maeda H (2015) Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review. J Oleo Sci 64(2):ess14226

    Google Scholar 

  100. Muradian K, Vaiserman A, Min K-J, Fraifeld V (2015) Fucoxanthin and lipid metabolism: a minireview. Nutr Metab Cardiovasc Dis 25(10):891–897

    CAS  PubMed  Google Scholar 

  101. Hu X, Tao N, Wang X, Xiao J, Wang M (2016) Marine-derived bioactive compounds with anti-obesity effect: a review. J Funct Foods 21:372–387

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riaz, M., Ahmad, R., Zia-Ul-Haq, M. (2021). Carotenoids as Antiobesity Agents. In: Zia-Ul-Haq, M., Dewanjee, S., Riaz, M. (eds) Carotenoids: Structure and Function in the Human Body. Springer, Cham. https://doi.org/10.1007/978-3-030-46459-2_17

Download citation

Publish with us

Policies and ethics