Skip to main content

Abstract

The genetic code (GC) plays a central role in all living organisms. From a mathematical point of view, the GC is a map from a set of 64 elements (which are codons) onto a set of 21 elements (which are 20 amino acids and 1 stop signal). The GC is the result of evolution, experimentally deciphered as early as the mid-1960s, but its satisfactory theoretical understanding does not yet exist. There are many papers on the GC modeling, its origin and evolution, but also many unsolved issues. In this contribution we provide a brief overview of genetic code modeling, highlighting the p-adic approach, which can describe many properties of the GC. Our primary mathematical tool is a p-adic distance, which simply and adequately describes similarities within the GC. We also point how one could apply this mathematical method to other sequences with a bioinformatic content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.H.C. Crick, The origin of the genetic code. J. Mol. Biol. 38(3), 367–379 (1968)

    Article  Google Scholar 

  2. M. Barbieri, Evolution of the genetic code: the ribosome-oriented model. Biol. Theory 10(4), 301–310 (2015)

    Article  Google Scholar 

  3. M. Barbieri, What is code biology? Biosystems 164, 1–10 (2018)

    Article  Google Scholar 

  4. M. Barbieri, Evolution of the genetic code: the ambiguity-reduction theory. Biosystems 185, 104024 (2019)

    Article  Google Scholar 

  5. M.R. Bernfield, M.W. Nirenberg, RNA codewords and protein synthesis. Science 147(3657), 479–484 (1965)

    Article  Google Scholar 

  6. B. Dragovich, A.Yu. Khrennikov, N.Ž. Mišić. Ultrametrics in the genetic code and the genome. Appl. Math. Comput. 309, 350–358 (2017)

    MathSciNet  MATH  Google Scholar 

  7. B. Dragovich, A. Dragovich, A p-adic model of DNA sequence and genetic code, arXiv: q-bio/0607018 [q-bio.GN] (2006)

    Google Scholar 

  8. B. Dragovich, A. Dragovich, p-Adic degeneracy of the genetic code. in Proceeding of Conference: Modern Mathematical Physics, ed. by B. Dragovich, Z. Rakić (Institute of Physics, Belgrade, 2007), pp. 179–188

    Google Scholar 

  9. B. Dragovich, A.Yu. Dragovich, A p-adic model of DNA sequence and genetic code. p-Adic Numbers Ultrametr. Anal. Appl. 1(1), 34–41 (2009)

    Google Scholar 

  10. B. Dragovich, A. Dragovich, p-Adic modelling of the genome and the genetic code. Comput. J. 53(4), 432–442 (2010)

    Google Scholar 

  11. B. Dragovich, p-Adic Structure of the Genetic Code (2012)

    Google Scholar 

  12. B. Dragovich, N.Ž. Mišić. p-Adic side of the genetic code and the genome, in Trends in Biomathematics: Modeling, Optimization and Computational Problems ed. by R.P. Mondaini (Springer, Berlin, 2018), pp. 75–89

    Google Scholar 

  13. B. Dragovich, Genetic code and number theory. FU Phys. Chem. Tech. 14(3), 225–241 (2016)

    Article  Google Scholar 

  14. N.Ž. Mišić, Standard genetic code: p-Adic modelling, nucleon balances and selfsimilarity. FU Phys. Chem. Tech. 14, 275–298 (2016)

    Article  Google Scholar 

  15. B. Dragovich, N.Ž. Mišić, p-adic hierarchical properties of the genetic code. Biosystems 185, 104017 (2019)

    Google Scholar 

  16. A.Yu. Khrennikov, S.V. Kozyrev, Genetic code on the diadic plane. Phys. A: Stat. Mech. Appl. 381, 265–272 (2007)

    Article  Google Scholar 

  17. A.V. Finkelstein, O.B. Ptitsyn, Protein physics, in Soft Condensed Matter, Complex Fluids and Biomaterials (Academic Press, London, 2002)

    Google Scholar 

  18. I.M. Gel’fand, M.I. Graev, I.I. Pyatetskii-Shapiro, Representation theory and automorphic functions, in Saunders Mathematics Books (Saunders, Philadelphia, 1969)

    MATH  Google Scholar 

  19. R. Rammal, G. Toulouse, M.A. Virasoro, Ultrametricity for physicists. Rev. Mod. Phys. 58, 765–788 (1986)

    Article  MathSciNet  Google Scholar 

  20. W.H. Schikhof, Ultrametric calculus: an introduction to p-Adic analysis, in Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  21. A.M. Robert, A course in p-adic analysis, in Graduate Texts in Mathematics (Springer, New York, 2000)

    Book  Google Scholar 

  22. L. Brekke, P.G.O. Freund, p-adic numbers in physics. Phys. Rep. 233, 1–66 (1993)

    Google Scholar 

  23. V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  24. B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, On p-adic mathematical physics. p-Adic Numbers Ultrametr. Anal. Appl. 1(1), 1–17 (2009)

    Google Scholar 

  25. B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V. Volovich, E.I. Zelenov, p-Adic mathematical physics: The first 30 years. p-Adic Numbers Ultrametr. Anal. Appl. 9(2), 87–121 (2017)

    Google Scholar 

  26. J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)

    Article  Google Scholar 

  27. G. Gamow, Possible relation between deoxyribonucleic acid and protein structures. Nature 173(4398), 318 (1954)

    Google Scholar 

  28. F.H. Crick, J.S. Griffith, L.E. Orgel, Codes without commas. Proc. Natl. Acad. Sci. USA 43(5), 416–421 (1957)

    Article  MathSciNet  Google Scholar 

  29. B. Hayes, Computing science: the invention of the genetic code. Am. Sci. 86(1), 8–14 (1998)

    Article  Google Scholar 

  30. Yu.B. Rumer, Systematization of codons in the genetic code. Dokl. Akad. Nauk SSSR 167(6), 1393–1394 (1966, Russian)

    Google Scholar 

  31. Yu.B. Rumer, Systematization of codons in the genetic code. Dokl. Akad. Nauk SSSR 183(1), 225–226 (1968, Russian)

    Google Scholar 

  32. E. Fimmel, L. Strüngmann, Yury Borisovich Rumer and his ‘biological papers’ on the genetic code. Philos. Trans. Royal Soc. A 374(2063), 20150228 (2016)

    Google Scholar 

  33. F.H.C. Crick, Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19(2), 548–555 (1966)

    Article  Google Scholar 

  34. C.R. Woese, Order in the genetic code. Proc. Natl. Acad. Sci. USA 54(1), 71–75 (1965)

    Article  Google Scholar 

  35. R. Swanson, A unifying concept for the amino acid code. Bull. Math. Biol. 46(2), 187–203 (1984)

    Article  Google Scholar 

  36. J.E.M. Hornos, Y.M.M. Hornos, Algebraic model for the evolution of the genetic code. Phys. Rev. Lett. 71, 4401–4404 (1993)

    Article  Google Scholar 

  37. J.D. Bashford, I. Tsohantjis, P.D. Jarvis, Codon and nucleotide assignments in a supersymmetric model of the genetic code. Phys. Lett. A 233(4), 481–488 (1997)

    Article  Google Scholar 

  38. M. Forger, S. Sachse, Lie superalgebras and the multiplet structure of the genetic code. I. Codon representations. J. Math. Phys. 41(8), 5407–5422 (2000)

    MathSciNet  MATH  Google Scholar 

  39. L. Frappat, A. Sciarrino, P. Sorba, Crystalizing the genetic code. J. Biol. Phys. 27(1), 1–38 (2001)

    Article  Google Scholar 

  40. V.I. Shcherbak, Twenty canonical amino acids of the genetic code: the arithmetical regularities. Part I. J. Theor. Biol. 162(3), 399–401 (1993)

    Article  Google Scholar 

  41. V.I. Shcherbak, Sixty-four triplets and 20 canonical amino acids of the genetic code: the arithmetical regularities. Part II. J. Theor. Biol. 166(4), 475–477 (1994)

    Article  Google Scholar 

  42. V.I. shCherbak, Arithmetic inside the universal genetic code. Biosystems 70(3), 187–209 (2003)

    Google Scholar 

  43. V. shCherbak, The Arithmetical Origin of the Genetic Code (Springer, Dordrecht, 2008), pp. 153–185

    Google Scholar 

  44. A.M. Downes, B.J. Richardson, Relationships between genomic base content and distribution of mass in coded proteins. J. Mol. Evol. 55(4), 476–490 (2002)

    Article  Google Scholar 

  45. M.M. Rakocevic, A harmonic structure of the genetic code. J. Theor. Biol. 229(2), 221–234 (2004)

    Article  Google Scholar 

  46. N.Ž. Mišić, From genetic code toward spacetime geometry, in Proceedings of TABIS 2013 Conference: Theoretical Approaches to BioInformation Systems ed. by R. Timotijević, D. Dragovich, B., Panajotović (Institute of Physics, Belgrade, 2014), pp. 101–123

    Google Scholar 

  47. E. Fimmel, L. Strüngmann, Mathematical fundamentals for the noise immunity of the genetic code. Biosystems 164, 186–198 (2018)

    Article  Google Scholar 

  48. E.V. Koonin, A.S. Novozhilov, Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61(2), 99–111 (2009)

    Article  Google Scholar 

  49. Á. Kun, Á. Radványi, The evolution of the genetic code: Impasses and challenges. Biosystems 164, 217–225 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Dragovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dragovich, B., Mišić, N.Ž. (2020). Modeling the Genetic Code: p-Adic Approach. In: Mondaini, R.P. (eds) Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment. BIOMAT 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-46306-9_24

Download citation

Publish with us

Policies and ethics