Abstract
This chapter introduces the Tug-of-War with random noise and establishes its relation to the p-Laplace equation in case p ≥ 2. The following topics are covered: the p-Laplacian and the p-harmonic functions, the mean value expansions and averaging principles, construction of Tug-of-War, dynamic programming principle, relation to Brownian motion when p = 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
T. Antunovic, Y. Peres, S. Sheffield, and S. Somersille. Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition. Communications in Partial Differential Equations, 37(10): 1839–1869, 2012.
S. Armstrong and Ch. Smart. A finite difference approach to the infinity Laplace equation and tug-of-war games. Trans AMS, 364: 595–636, 2012.
R. Buckdahn, P. Cardaliaguet, and M. Quincampoix. A representation formula for the mean curvature motion. SIAM Journal on Mathematical Analysis, 33(4): 827–846, 2001.
J.R. Casas and L. Torres. Strong edge features for image coding. pages 443–450, 1996.
F. Charro, J. Garcia Azorero, and J.D. Rossi. A mixed problem for the infinity Laplacian via tug-of-war games. Calculus of Variations and Partial Differential Equations, 34(3): 307–320, 2009.
L. Codenotti, M. Lewicka, and J. Manfredi. Discrete approximations to the double-obstacle problem, and optimal stopping of tug-of-war games. Trans. Amer. Math. Soc., 369: 7387–7403, 2017.
K. Does. An evolution equation involving the normalized p-Laplacian. Comm. Pure Appl. Anal., 10: 361–369, 2011.
P. Erdos and A.H. Stone. On the sum of two Borel sets. Proc. Amer. Math. Soc., 25: 304–306, 1970.
M. Falcone, S. Finzi Vita, T. Giorgi, and R.G. Smits. A semi-Lagrangian scheme for the game p-Laplacian via p-averaging. Applied Numerical Mathematics, 73: 63–80, 2013.
I Gomez and J.D. Rossi. Tug-of-war games and the infinity Laplacian with spatial dependence. Communications on Pure and Applied Analysis, 12(5): 1959–1983, 2013.
R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Archive for Rational Mechanics and Analysis, 123(1): 51–74, 1993.
P. Juutinen, T. Lukkari, and Parviainen M. Equivalence of viscosity and weak solutions for the p(x)-Laplacian. Ann. Inst. H. Poincarè Anal. Non Linèaire, 27(6): 1471–1487, 2010.
B. Kawohl. Variational versus PDE-based approaches in mathematical image processing. CRM Proceedings and Lecture Notes, 44: 113–126, 2008.
B. Kawohl, J. Manfredi, and M. Parviainen. Solutions of nonlinear PDEs in the sense of averages. J. Math. Pures Appl., 97(2): 173–188, 2012.
R.V. Kohn and S. Serfaty. A deterministic-control-based approach to motion by curvature. Comm. Pure Appl. Math, 59: 344–407, 2006.
R.V. Kohn and S. Serfaty. A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations. Comm. Pure Appl. Math, 63: 1298–1350, 2010.
E. Le Gruyer. On absolutely minimizing Lipschitz extensions and PDE δ ∞u = 0. NoDEA, 14: 29–55, 2007.
J.C. Le Gruyer, E.and Archer. Harmonious extensions. SIAM J.Math. Anal., 29(1): 279–292, 1998.
P. Lindqvist. Notes on the stationary p-Laplace equation. SpringerBriefs in Mathematics. Springer, 2019.
Q. Liu and A. Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure and Applied Analysis, 14(1): 167–184, 2015.
H. Luiro and M. Parviainen. Gradient walk and p-harmonic functions. Proc. Amer. Math. Soc., 145: 4313–4324, 2017.
H. Luiro, M. Parviainen, and E. Saksman. On the existence and uniqueness of p-harmonious functions. Differential and Integral Equations, 27(3/4): 201–216, 2014.
J. Manfredi, M. Parviainen, and J. Rossi. An asymptotic mean value characterization for p-harmonic functions. Proc. Amer. Math. Soc., 138(3): 881–889, 2010.
J. Manfredi, M. Parviainen, and J. Rossi. Dynamic programming principle for tug-of-war games with noise. ESAIM Control Optim. Calc. Var., 18: 81–90, 2012a.
J.J. Manfredi, M. Parviainen, and J.D. Rossi. On the definition and properties of p-harmonious functions. Ann. Sc. Norm. Super. Pisa Cl. Sci., 11(2): 215–241, 2012b.
P. Mörters and Y. Peres. Brownian motion. Cambridge University Press, 2010.
K. Nyström and M. Parviainen. Tug-of-war, market manipulation and option pricing. Math. Finance, 27(2): 279–312, 2017.
A.M. Oberman. A convergent difference scheme for infinity Laplacian: construction of absolutely minimizing lipschitz extensions. Math. Comp., 74: 1217–1230, 2005.
M. Parviainen and E. Ruosteenoja. Local regularity for time-dependent tug-of-war games with varying probabilities. J. Differential Equations, 261(2): 1357–1398, 2016.
Y. Peres and S. Sheffield. Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math J., 145: 91–120, 2008.
Y. Peres, O. Schramm, S. Sheffield, and D.B. Wilson. Tug-of-war and the inifnity Laplacian. J. Amer. Math. Soc, 22: 167–210, 2009.
Y. Peres, G. Pete, and S. Somersille. Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones. Calculus of Variations and Partial Differential Equations, 38(3–4): 541–564, 2010.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Lewicka, M. (2020). Tug-of-War with Noise: Case p ∈ [2, ∞). In: A Course on Tug-of-War Games with Random Noise. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-030-46209-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-46209-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46208-6
Online ISBN: 978-3-030-46209-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)