Skip to main content

Tug-of-War with Noise: Case p ∈ [2, )

  • Chapter
  • First Online:
A Course on Tug-of-War Games with Random Noise

Part of the book series: Universitext ((UTX))

  • 1001 Accesses

Abstract

This chapter introduces the Tug-of-War with random noise and establishes its relation to the p-Laplace equation in case p ≥ 2. The following topics are covered: the p-Laplacian and the p-harmonic functions, the mean value expansions and averaging principles, construction of Tug-of-War, dynamic programming principle, relation to Brownian motion when p = 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T. Antunovic, Y. Peres, S. Sheffield, and S. Somersille. Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition. Communications in Partial Differential Equations, 37(10): 1839–1869, 2012.

    MathSciNet  MATH  Google Scholar 

  • S. Armstrong and Ch. Smart. A finite difference approach to the infinity Laplace equation and tug-of-war games. Trans AMS, 364: 595–636, 2012.

    MathSciNet  MATH  Google Scholar 

  • R. Buckdahn, P. Cardaliaguet, and M. Quincampoix. A representation formula for the mean curvature motion. SIAM Journal on Mathematical Analysis, 33(4): 827–846, 2001.

    MathSciNet  MATH  Google Scholar 

  • J.R. Casas and L. Torres. Strong edge features for image coding. pages 443–450, 1996.

    Google Scholar 

  • F. Charro, J. Garcia Azorero, and J.D. Rossi. A mixed problem for the infinity Laplacian via tug-of-war games. Calculus of Variations and Partial Differential Equations, 34(3): 307–320, 2009.

    MathSciNet  MATH  Google Scholar 

  • L. Codenotti, M. Lewicka, and J. Manfredi. Discrete approximations to the double-obstacle problem, and optimal stopping of tug-of-war games. Trans. Amer. Math. Soc., 369: 7387–7403, 2017.

    MathSciNet  MATH  Google Scholar 

  • K. Does. An evolution equation involving the normalized p-Laplacian. Comm. Pure Appl. Anal., 10: 361–369, 2011.

    MathSciNet  MATH  Google Scholar 

  • P. Erdos and A.H. Stone. On the sum of two Borel sets. Proc. Amer. Math. Soc., 25: 304–306, 1970.

    MathSciNet  MATH  Google Scholar 

  • M. Falcone, S. Finzi Vita, T. Giorgi, and R.G. Smits. A semi-Lagrangian scheme for the game p-Laplacian via p-averaging. Applied Numerical Mathematics, 73: 63–80, 2013.

    MathSciNet  MATH  Google Scholar 

  • I Gomez and J.D. Rossi. Tug-of-war games and the infinity Laplacian with spatial dependence. Communications on Pure and Applied Analysis, 12(5): 1959–1983, 2013.

    Google Scholar 

  • R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Archive for Rational Mechanics and Analysis, 123(1): 51–74, 1993.

    MathSciNet  MATH  Google Scholar 

  • P. Juutinen, T. Lukkari, and Parviainen M. Equivalence of viscosity and weak solutions for the p(x)-Laplacian. Ann. Inst. H. Poincarè Anal. Non Linèaire, 27(6): 1471–1487, 2010.

    Google Scholar 

  • B. Kawohl. Variational versus PDE-based approaches in mathematical image processing. CRM Proceedings and Lecture Notes, 44: 113–126, 2008.

    MathSciNet  MATH  Google Scholar 

  • B. Kawohl, J. Manfredi, and M. Parviainen. Solutions of nonlinear PDEs in the sense of averages. J. Math. Pures Appl., 97(2): 173–188, 2012.

    MathSciNet  MATH  Google Scholar 

  • R.V. Kohn and S. Serfaty. A deterministic-control-based approach to motion by curvature. Comm. Pure Appl. Math, 59: 344–407, 2006.

    MathSciNet  MATH  Google Scholar 

  • R.V. Kohn and S. Serfaty. A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations. Comm. Pure Appl. Math, 63: 1298–1350, 2010.

    MathSciNet  MATH  Google Scholar 

  • E. Le Gruyer. On absolutely minimizing Lipschitz extensions and PDE δ u = 0. NoDEA, 14: 29–55, 2007.

    MathSciNet  MATH  Google Scholar 

  • J.C. Le Gruyer, E.and Archer. Harmonious extensions. SIAM J.Math. Anal., 29(1): 279–292, 1998.

    Google Scholar 

  • P. Lindqvist. Notes on the stationary p-Laplace equation. SpringerBriefs in Mathematics. Springer, 2019.

    MATH  Google Scholar 

  • Q. Liu and A. Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure and Applied Analysis, 14(1): 167–184, 2015.

    MathSciNet  MATH  Google Scholar 

  • H. Luiro and M. Parviainen. Gradient walk and p-harmonic functions. Proc. Amer. Math. Soc., 145: 4313–4324, 2017.

    MathSciNet  MATH  Google Scholar 

  • H. Luiro, M. Parviainen, and E. Saksman. On the existence and uniqueness of p-harmonious functions. Differential and Integral Equations, 27(3/4): 201–216, 2014.

    MathSciNet  MATH  Google Scholar 

  • J. Manfredi, M. Parviainen, and J. Rossi. An asymptotic mean value characterization for p-harmonic functions. Proc. Amer. Math. Soc., 138(3): 881–889, 2010.

    MathSciNet  MATH  Google Scholar 

  • J. Manfredi, M. Parviainen, and J. Rossi. Dynamic programming principle for tug-of-war games with noise. ESAIM Control Optim. Calc. Var., 18: 81–90, 2012a.

    MathSciNet  MATH  Google Scholar 

  • J.J. Manfredi, M. Parviainen, and J.D. Rossi. On the definition and properties of p-harmonious functions. Ann. Sc. Norm. Super. Pisa Cl. Sci., 11(2): 215–241, 2012b.

    MathSciNet  MATH  Google Scholar 

  • P. Mörters and Y. Peres. Brownian motion. Cambridge University Press, 2010.

    MATH  Google Scholar 

  • K. Nyström and M. Parviainen. Tug-of-war, market manipulation and option pricing. Math. Finance, 27(2): 279–312, 2017.

    MathSciNet  Google Scholar 

  • A.M. Oberman. A convergent difference scheme for infinity Laplacian: construction of absolutely minimizing lipschitz extensions. Math. Comp., 74: 1217–1230, 2005.

    MathSciNet  MATH  Google Scholar 

  • M. Parviainen and E. Ruosteenoja. Local regularity for time-dependent tug-of-war games with varying probabilities. J. Differential Equations, 261(2): 1357–1398, 2016.

    MathSciNet  MATH  Google Scholar 

  • Y. Peres and S. Sheffield. Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math J., 145: 91–120, 2008.

    Article  MathSciNet  Google Scholar 

  • Y. Peres, O. Schramm, S. Sheffield, and D.B. Wilson. Tug-of-war and the inifnity Laplacian. J. Amer. Math. Soc, 22: 167–210, 2009.

    MathSciNet  MATH  Google Scholar 

  • Y. Peres, G. Pete, and S. Somersille. Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones. Calculus of Variations and Partial Differential Equations, 38(3–4): 541–564, 2010.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewicka, M. (2020). Tug-of-War with Noise: Case p ∈ [2, ). In: A Course on Tug-of-War Games with Random Noise. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-030-46209-3_3

Download citation

Publish with us

Policies and ethics