Advertisement

Cooperative Communication Techniques in Wireless-Powered Backscatter Communication: Preambles and Technical Perspective

Chapter
  • 220 Downloads
Part of the Internet of Things book series (ITTCC)

Abstract

User cooperation is considered as a key enabling technology in wireless-powered backscatter communication (BaKcom) to improve the energy efficiency of the overall network while comparing to a traditional non-cooperative system. In light of the literature on BaKcom, most researchers consider such scenarios, where they backscatter the information directly to the receiver. The channel fading limits the system throughput between each transmitter and receiver pair. The limitation in system throughput motivates us to provide an introductory guideline and technical perspective of cooperative communication in the backscatter scenario. While this chapter mainly focuses on the technical aspects and potential applications of cooperative BaKcom, a brief historical perspective of cooperation techniques in general for wireless communications along with their implementation details, applications and research challenges is described. Section  2 of this chapter focuses on the role and uses of low powered Internet of Things (IoT) devices in future wireless communications and shows how BaKcom technology benefits such devices. In Section  3, we start our discussion by designing a system model and explaining the basic working of cooperative communication in backscatter scenarios. Based on the available literature, some potential cooperative techniques are provided, along with their comparative analysis. Finally, Section  4 concludes the chapter by providing future research directions.

Keywords

Cooperative communication Backscatter communication (BaKcom) Wireless-power devices Energy harvesting Internet of Things (IoT) Ambient backscatter (AmB) 

References

  1. 1.
    Cisco Visual Networking Index, Global mobile data traffic forecast update, 2016–2021 white paper, Cisco: San Jose, CA, USAGoogle Scholar
  2. 2.
    Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 74–80 (2004)CrossRefGoogle Scholar
  3. 3.
    Liu, K.R., Sadek, A.K., Su, W., Kwasinski, A.: Cooperative Communications and Networking. Cambridge University Press (2009)Google Scholar
  4. 4.
    Naqvi, S.A.R., Hassan, S.A., Pervaiz, H., Ni, Q., Musavian, L.: Self-adaptive power control mechanism in D2D enabled hybrid cellular network with mmWave small cells: an optimization approach. In: IEEE Globecom Workshops (GC Wkshps), vol. 2016, pp. 1–6. IEEE (2016)Google Scholar
  5. 5.
    Sun, Y., Yue, D.-W.: Special issue on cooperative wireless and mobile communications. IET Commun. 7(17), 1881–1882 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhong, Z.-D., Ai, B., Zhu, G., Wu, H., Xiong, L., Wang, F.-G., Lei, L., Ding, J.-W., Guan, K., He, R.-S.: Dedicated Mobile Communications for High-Speed Railway. Springer (2018)Google Scholar
  7. 7.
    Pervaiz, H., Musavian, L., Ni, Q.: Area energy and area spectrum efficiency trade-off in 5G heterogeneous networks. In: 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 1178–1183. IEEE (2015)Google Scholar
  8. 8.
    Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inform. Theory 25(5), 572–584 (1979)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sendonaris, A., Erkip, E., Aazhang, B.: Increasing uplink capacity via user cooperation diversity. In: Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252), p. 156. IEEE (1998)Google Scholar
  10. 10.
    Ahmed, E., Gharavi, H.: Cooperative vehicular networking: a survey. IEEE Trans. Intell. Transp. Syst. 19(3), 996–1014 (2018)CrossRefGoogle Scholar
  11. 11.
    Zhuang, W., Ismail, M.: Cooperation in wireless communication networks. IEEE Wirel. Commun. 19(2), 10–20 (2012)CrossRefGoogle Scholar
  12. 12.
    Zhao, Y., Adve, R., Lim, T.J.: Symbol error rate of selection amplify-and-forward relay systems. IEEE Commun. Lett. 10(11), 757–759 (2006)CrossRefGoogle Scholar
  13. 13.
    Zhou, Q.F., Li, Y., Lau, F.C., Vucetic, B.: Decode-and-forward two-way relaying with network coding and opportunistic relay selection. IEEE Trans. Commun. 58(11), 3070–3076 (2010)CrossRefGoogle Scholar
  14. 14.
    Laneman, J.N., Tse, D.N., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inform. Theory 50(12), 3062–3080 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ikki, S.S., Ahmed, M.H.: Performance analysis of incremental-relaying cooperative-diversity networks over rayleigh fading channels. IET Commun. 5(3), 337–349 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hunter, T.E., Nosratinia, A.: Cooperation diversity through coding. In: Proceedings IEEE International Symposium on Information Theory, p. 220. IEEE (2002)Google Scholar
  17. 17.
    Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity-part I: system description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)CrossRefGoogle Scholar
  18. 18.
    Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Trans. Commun. 51(11), 1939–1948 (2003)Google Scholar
  19. 19.
    3rd Generation Partnership Project (3GPP), TS 36.141. LTE; Evolved Universal terrestrial radio access (e-utra); base station (BS) (2015). https://www.etsi.org/deliver/etsi_ts/136100_136199/136141/13.06.00_60/ts_136141v130600p.pdf. Accessed 8 Oct 2019
  20. 20.
    Chen, J., Hu, K., Wang, Q., Sun, Y., Shi, Z., He, S.: Narrowband internet of things: implementations and applications. IEEE Internet of Things J. 4(6), 2309–2314 (2017)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Chi, K., Chen, H., Wang, Z., Zhu, Y.: Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things J. 5(3), 1474–1484 (2018)CrossRefGoogle Scholar
  22. 22.
    Nauman, A., Jamshed, M.A., Ahmad, Y., Ali, R., Zikria, Y.B., Kim, S.W.: An intelligent deterministic D2D communication in narrow-band Internet of Things. In: 15th International Wireless Communications & Mobile Computing Conference (IWCMC), vol. 2019, pp. 2111–2115. IEEE (2019)Google Scholar
  23. 23.
    Islam, S.R., Avazov, N., Dobre, O.A., Kwak, K.-S.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2016)CrossRefGoogle Scholar
  24. 24.
    Kim, J.-B., Lee, I.-H.: Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun. Lett. 19(11), 2037–2040 (2015)CrossRefGoogle Scholar
  25. 25.
    Ding, Z., Dai, H., Poor, H.V.: Relay selection for cooperative NOMA. IEEE Wirel. Communi. Lett. 5(4), 416–419 (2016)CrossRefGoogle Scholar
  26. 26.
    Ehsan, S., Hamdaoui, B.: A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Commun. Surv. Tutor. 14(2), 265–278 (2011)CrossRefGoogle Scholar
  27. 27.
    Jamshed, M.A., Amjad, O., Zeydan, E.: Multicore energy efficient scheduling with energy harvesting for wireless multimedia sensor networks. In: International Multi-topic Conference (INMIC), vol. 2017, pp. 1–5. IEEE (2017)Google Scholar
  28. 28.
    Jamshed, M.A., Amjad, O., Khan, M.F.: Energy optimized routing with directional antennas and tagging for multimedia sensor networks. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–5. IEEE (2018)Google Scholar
  29. 29.
    Aishwarya, M., Kirthiga, S.: Relay assisted cooperative communication for wireless sensor networks. In: 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), pp. 1–6. IEEE (2018)Google Scholar
  30. 30.
    Mansourkiaie, F., Ahmed, M.H.: Per-node traffic load in cooperative wireless sensor networks. IEEE Commun. Lett. 20(2), 344–347 (2015)CrossRefGoogle Scholar
  31. 31.
    Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. In: IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334–2360 (2019). https://doi.org/10.1109/COMST.2019.2902862
  32. 32.
    Tran, T.X., Hajisami, A., Pompili, D.: Cooperative hierarchical caching in 5G cloud radio access networks. IEEE Netw. 31(4), 35–41 (2017)CrossRefGoogle Scholar
  33. 33.
    Stockman, H.: Communication by means of reflected power. Proc. IRE 36(10), 1196–1204 (1948)CrossRefGoogle Scholar
  34. 34.
    Zhang, P., Gummeson, J., Ganesan, D.: Blink: a high throughput link layer for backscatter communication. In: Proceedings of the 10th International Conference on Mobile systems, Applications, and Services, pp. 99–112. ACM (2012)Google Scholar
  35. 35.
    Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient backscatter: wireless communication out of thin air. In: ACM SIGCOMM Computer Communication Review, vol. 43, pp. 39–50. ACM (2013)Google Scholar
  36. 36.
    Parks, A.N., Liu, A., Gollakota, S., Smith, J.R.: Turbocharging ambient backscatter communication. In: ACM SIGCOMM Computer Communication Review, vol. 44, pp. 619–630. ACM (2014)Google Scholar
  37. 37.
    Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient backscatter communications: a contemporary survey. IEEE Commun. Surv. Tutor. 20(4), 2889–2922 (2018)CrossRefGoogle Scholar
  38. 38.
    Lyu, B., Hoang, D.T., Yang, Z.: User cooperation in wireless-powered backscatter communication networks. IEEE Wirel. Commun. Lett. 8(2), 632–635 (2019)CrossRefGoogle Scholar
  39. 39.
    Gong, S., Xu, J., Niyato, D., Huang, X., Han, Z.: Backscatter-aided cooperative relay communications in wireless-powered hybrid radio networks. In: IEEE Network, vol. 33, no. 5, pp. 234–241 (2019). https://doi.org/10.1109/MNET.2019.1800335
  40. 40.
    Yang, G., Zhang, Q., Liang, Y.-C.: Cooperative ambient backscatter communications for green Internet-of-Things. IEEE Internet of Things J. 5(2), 1116–1130 (2018)CrossRefGoogle Scholar
  41. 41.
    Kellogg, B., Talla, V., Gollakota, S., Smith, J.R.: Passive Wi-Fi: bringing low power to Wi-Fi transmissions. In: 13th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 16), pp. 151–164 (2016)Google Scholar
  42. 42.
    Liu, W., Huang, K., Zhou, X., Durrani, S.: Next generation backscatter communication: systems, techniques, and applications. EURASIP J. Wirel. Commun. Network. 2019(1), 69 (2019)CrossRefGoogle Scholar
  43. 43.
    Boyer, C., Roy, S.: Backscatter communication and RFID: coding, energy, and MIMO analysis. In: IEEE Transactions on Communications, vol. 62, no. 3, pp. 770–785 (2014). https://doi.org/10.1109/TCOMM.2013.120713.130417
  44. 44.
    Munir, S.W., Amjad, O., Zeydan, E., Ercan, A.Ö.: Optimization and analysis of WLAN RF energy harvesting system architecture. In: International Symposium on Wireless Communication Systems (ISWCS), vol. 2016, pp. 429–433. IEEE (2016)Google Scholar
  45. 45.
    Amjad, O., Munir S.W., Imeci, S.T., Ercan, A.Ö.: Design and implementation of dual band microstrip patch antenna for WLAN energy harvesting system. Appl. Comput. Electromagn. Soc. J (2018)Google Scholar
  46. 46.
    Tentzeris, M.M., Kawahara, Y.: Novel energy harvesting technologies for ICT applications. In: International Symposium on Applications and the Internet, vol. 2008, pp. 373–376. IEEE (2008)Google Scholar
  47. 47.
    Valenta, C.R., Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15(4), 108–120 (2014)CrossRefGoogle Scholar
  48. 48.
    Bi, S., Ho, C.K., Zhang, R.: Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53(4), 117–125 (2015)CrossRefGoogle Scholar
  49. 49.
    Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J.: Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun. Surv. Tutor. 20(1), 264–302 (2017)CrossRefGoogle Scholar
  50. 50.
    Zhang, P., Hu, P., Pasikanti, V., Ganesan, D.: Ekhonet: high speed ultra low-power backscatter for next generation sensors. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 557–568. ACM (2014)Google Scholar
  51. 51.
    Lyu, B., Yang, Z., Guo, H., Tian, F., Gui, G.: Relay cooperation enhanced backscatter communication for Internet-of-Things. IEEE Internet of Things J. 6(2), 2860–2871 (2018)CrossRefGoogle Scholar
  52. 52.
    Bharadia, D., Joshi, K.R., Kotaru, M., Katti, S.: Backfi: high throughput WiFi backscatter. ACM SIGCOMM Comput. Commun. Rev. 45(4), 283–296 (2015)CrossRefGoogle Scholar
  53. 53.
    Liu, T., Qu, X., Tan, W., Cheng, Y.: An energy efficient cooperative communication scheme in ambient RF powered sensor networks. IEEE Access 7, 86545–86554 (2019)CrossRefGoogle Scholar
  54. 54.
    Haider, S.K., Jamshed, M.A., Jiang, A., Pervaiz, H.: An energy efficient cluster-heads re-usability mechanism for wireless sensor networks. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)Google Scholar
  55. 55.
    Wang, W., Wang, Q.: Price the QoE, not the data: SMP-economic resource allocation in wireless multimedia Internet of Things. IEEE Commun. Mag. 56(9), 74–79 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Institute for Communication Systems (ICS), Home of 5G Innovation Centre (5GIC)University of SurreyGuildfordUK
  2. 2.School of Computing and CommunicationsLancaster UniversityLancasterUK
  3. 3.Department of Computer ScienceGeorgia Southern UniversityStatesboroUSA
  4. 4.School of Electronic Engineering and Computer ScienceQueen Marry University of LondonLondonUK

Personalised recommendations