Skip to main content

A Secure Fog Computing Architecture for Continuous Health Monitoring

  • Chapter
  • First Online:
Fog Computing for Healthcare 4.0 Environments

Abstract

Automation of health monitoring has witnessed an unmatched transformation during the past decade owing to advancement in the IoT. In automated health monitoring system, patient is efficiently and precisely monitored using numerous sensing devices. These monitored parameters need to be forwarded and processed at cloud which aids medical expert in diagnosis and treatment. However, the transmission of this data to cloud necessitates a wide bandwidth and high speed networks as real-time monitoring generates a plethora of data. In order to address this issue, the computing resources are pushed to the edges of the network, known as fog computing. Fog computing eliminates the limitations of cloud computing as it has low bandwidth requirement and reduced latency time. Additionally, it also addresses the issue of scalability and thus caters to the demand of IoT-based computing environment further making it an appropriate choice for implementing any latency-sensitive and location-sensitive application, e.g., automated Health Monitoring System (HMS). In this chapter, the authors discuss the evolution in IoT, concept of cloud computing and related issues. Thereafter, the authors present the concept of fog computing along with associated constraints and challenges. Furthermore, the authors propose a secure fog computing architecture by integrating security aspect in the fog layer. In the proposed architecture, authors present two-step approach to maintain privacy and integrity of health data. The proposed architecture caters the demand of a secure automated HMS that advocates its widespread deployment in real life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheth, A. P., Srivastava, B., & Michahelles, F. (2018). IoT-enhanced human experience. IEEE Internet Computing, 22(1), 4.

    Google Scholar 

  2. Md Rafeeq, C., & Kumar, S. (2017). Internet of Things and cloud computing in medical monitoring systems. International Journal of Advances in Computer Science and Cloud Computing, 5(1).

    Google Scholar 

  3. Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2018). A systematic review on scheduling public transport using IoT as tool. In B. Panigrahi, M. Trivedi, K. Mishra, S. Tiwari, & P. Singh (Eds.), Smart innovations in communication and computational sciences. Vol. 670: Advances in intelligent systems and computing (pp. 39–48). Singapore: Springer.

    Google Scholar 

  4. Mangla, M., Akhare, R., & Ambarkar, S. Context-aware automation based energy conservation techniques for IoT ecosystem. In Energy conservation for IoT devices concepts, paradigms and solutions (Vol. 206). Singapore: Springer Nature.

    Google Scholar 

  5. Mittal, M., Tanwar, S., Agarwal, B., & Goyal, L. M. (Eds.). (2019). Energy conservation for IoT devices: Concepts, paradigms and solutions, studies in systems, decision and control (pp. 1–356). Singapore: Springer Nature Singapore Pte Ltd.

    Google Scholar 

  6. Kumar, S., & Goudar, R. H. (2012, December). Cloud computing—Research issues, challenges, architecture, platforms and applications: A survey. International Journal of Future Computer and Communication, 1(4), 356–360.

    Google Scholar 

  7. Svorobej, S., Endo, P. T., Bendechache, M., Filelis-Papadopoulos, C., Giannoutakis, K. M., Gravvanis, G. A., et al. (2019). Simulating fog and edge computing scenarios: An overview and research challenges. Future Internet, 11, 55. https://doi.org/10.3390/fi11030055.

    Article  Google Scholar 

  8. Islam, M. M., Morshed, S., & Goswami, P. (2013, July). Cloud computing: A survey on its limitations and potential solutions. IJCSI International Journal of Computer Science Issues, 10(4), 159.

    Google Scholar 

  9. Varghese, B., & Buyya, R. (2017). Next generation cloud computing: New trends and research directions. Future Generation Computer Systems, 79, 849–861.

    Google Scholar 

  10. Ali, M., & Miraz, M. H. (2013). Cloud computing applications. In Proceedings of the International Conference on Cloud Computing and eGovernance.

    Google Scholar 

  11. Prasad, V. K., Bhavsar, M., & Tanwar, S. (2019). Influence of monitoring: Fog and Edge computing. Scalable Computing: Practice and Experience, 20(2), 365–376.

    Google Scholar 

  12. Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., & Mahmoudi, C. (2018). Fog computing conceptual model. In: NIST Special Publication 500-325. https://doi.org/10.6028/NIST.SP.500-325.

  13. Mehraeen, E., Ghazisaeedi, M., Farzi, J., & Mirshekari, S. (2017). Security challenges in healthcare cloud computing: A systematic review. Global Journal of Health Science, 9(3), 157.

    Google Scholar 

  14. Velasquez, K., Abreu, D. P., Assis, M. R. M., Senna, C., Aranha, D. F., Bittencourt, L. F., et al. (2018). Fog orchestration for the internet of everything: State-of-the-art and research challenges. Journal of Internet Services and Applications, 9(1), 14.

    Google Scholar 

  15. Patil, P. V. Fog computing. International Journal of Computer Applications (0975–8887) National Conference (AERA-2015).

    Google Scholar 

  16. Simmhan, Y. (2018). Big data and fog computing. In S. Sakr & A. Zomaya (Eds.), Encyclopedia of big data technologies. Cham: Springer.

    Google Scholar 

  17. Tanwar, S., Tyagi, S., & Kumar, N. (Eds.). (2019). Multimedia big data computing for IoT applications: Concepts, paradigms and solutions, intelligent systems reference library (pp. 1–425). Singapore: Springer Nature Singapore Pte Ltd.

    Google Scholar 

  18. Tanwar, S., Vora, J., Kanriya, S., Tyagi, S., Kumar, N., Sharma, V., et al. (2019). Human arthritis analysis in fog computing environment using Bayesian network classifier and thread protocol. IEEE Consumer Electronics Magazine, 9(1), 88–94.

    Google Scholar 

  19. Dastjerdi, A. V., Gupta, H., Calheiros, R. N., Ghosh, S. K., & Buyya, R. Fog computing: Principles, architectures, and applications. In Internet of Things: Principles and paradigms. Burlington, MA: Morgan Kaufmann.

    Google Scholar 

  20. Lu, X., Yin, W., Wen, Q., Liang, K., Chen, L., & Chen, J. (2018). Message integration authentication in the Internet-of-Things via lattice-based batch signatures. Sensors, 18(11), 4056.

    Google Scholar 

  21. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R., & Choo, K. K. R. (2019). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128, 90–104.

    Google Scholar 

  22. Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. J. P. C. (2019). HRIDaaY: Ballistocardiogram-based heart rate monitoring using fog computing. In IEEE Global Communications Conference (GLOBECOM-2019), Hawaii, USA, 9–13 December 2009 (pp. 1–6).

    Google Scholar 

  23. Elmisery, A. M., Rho, S., & Botvich, D. (2016). A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access, 4, 8418–8441.

    Google Scholar 

  24. Lee, K., Kim, D., Ha, D., Rajput, U., & Heekuck, O. (2015). On security and privacy issues of fog computing supported Internet of Things environment. In 2015 6th International Conference on the Network of the Future (NOF) (pp. 1–3). Piscataway, NJ: IEEE.

    Google Scholar 

  25. Atlam, H. F., Walters, R. J., & Wills, G. B. (2018). Fog computing and the internet of things: A review. Big Data and Cognitive Computing, 2(2), 10.

    Google Scholar 

  26. Kumari, S. T., Tyagi, S., Kumar, N., & Rodrigues, J. (2019, June). Fog computing for smart grid systems in 5G environment: Challenges and solutions. IEEE Wireless Communications Magazine, 26(3), 47–53.

    Google Scholar 

  27. Luan, T. H., Gao, L., Li, Z, Yang, X., Wei, G., & Sun, L. (2015). Fog computing: Focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815.

    Google Scholar 

  28. Yi, S., Hao, Z., Qin, Z., & Li, Q. (2015). Fog computing: Platform and applications. In 2015 Third IEEE Workshop on hot topics in web systems and technologies (HotWeb) (pp. 73–78). Piscataway, NJ: IEEE.

    Google Scholar 

  29. Peter, N. (2015). Fog computing and its real time applications. International Journal of Emerging Technology and Advanced Engineering, 5(6), 266–269.

    Google Scholar 

  30. Mistry, S. T., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 1–19.

    Google Scholar 

  31. Tanwar, S., Tyagi, S., & Kumar, S. The role of Internet of Things and smart grid for the development of a smart city. In Intelligent communication and computational technologies (Lecture Notes in Networks and Systems: Proceedings of Internet of Things for technological development, IoT4TD 2017) (Vol. 19, pp. 23–33). Berlin: Springer International.

    Google Scholar 

  32. Enabled Smart Tourism and Hospitality Management. In International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2019), Beijing, China, August 28–31, 2019, pp. 237–241.

    Google Scholar 

  33. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13–16). New York: ACM.

    Google Scholar 

  34. Tanwar, S., Patel, P., Patel, K., Tyagi, S., Kumar, N., & Obaidat, M. S. An advanced Internet of Thing based security alert system for smart home. In International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2017), Dalian University, Dalian, China, 21-23 July 2017 (pp. 25–29).

    Google Scholar 

  35. Dastjerdi, A. V., Gupta, H., Calheiros, R. N., Ghosh, S. K., & Buyya, R. (2016). Fog computing: Principles, architectures, and applications. In Internet of Things (pp. 61–75). Burlington, MA: Morgan Kaufmann.

    Google Scholar 

  36. Gor, M., Vora, J., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., et al. (2017, July). GATA: GPS Arduino based tracking and alarm system for protection of wildlife animals. In International conference on computer, information and telecommunication systems (IEEE CITS-2017), Dalian University, Dalian, China, 21-23 (pp. 166–170).

    Google Scholar 

  37. Nikoloudakis, Y., Markakis, E., George, M., Evangelos, P., & Charalabos, S. (2017). An NF V-powered emergency system for smart enhanced living environments. In 2017 IEEE Conference on network function virtualization and software defined networks (NFV-SDN) (pp. 258–263). Piscataway, NJ: IEEE.

    Google Scholar 

  38. Cerina, L., Notargiacomo, S., Paccanit, M. G. L., & Santambrogio, M. D. (2017). A fog-computing architecture for preventive healthcare and assisted living in smart ambients. In 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI) (pp. 1–6). Piscataway, NJ: IEEE.

    Google Scholar 

  39. Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13.

    Google Scholar 

  40. Farjana, N., Roy, S., Mahi, M. J. N., & Whaiduzzaman, M. (2020). An identity-based encryption scheme for data security in Fog computing. In Proceedings of International Joint Conference on computational intelligence (pp. 215–226). Singapore: Springer.

    Google Scholar 

  41. Mahmoud, M. M. E., Rodrigues, J. J. P. C., Saleem, K., Al-Muhtadi, J., Kumar, N., & Korotaev, V. (2018). Towards energy-aware fog-enabled cloud of things for healthcare. Computers and Electrical Engineering, 67, 58–69.

    Google Scholar 

  42. Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., & Bilbao, J. (2017). Fog computing based efficient IoT scheme for the Industry 4.0. In 2017 IEEE International workshop of electronics, control, measurement, signals and their application to mechatronics (ECMSM) (pp. 1–6). Piscataway, NJ: IEEE.

    Google Scholar 

  43. Vora, J., Kanriya, S., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). TILAA: Tactile internet-based ambient assistant living in fog environment. Future Generation Computer Systems, 98, 635–649.

    Google Scholar 

  44. Azimi, I., Anzanpour, A., Rahmani, A. M., Pahikkala, T., Levorato, M., Liljeberg, P., et al. (2017). Hich: Hierarchical fog-assisted computing architecture for healthcare iot. ACM Transactions on Embedded Computing Systems (TECS), 16(5s), 174.

    Google Scholar 

  45. He, S., Cheng, B., Wang, H., Huang, Y., & Chen, J. (2017). Proactive personalized services through fog-cloud computing in large-scale IoT-based healthcare application. China Communications, 14(11), 1–16.

    Google Scholar 

  46. Baker, S. B., Xiang, W., & Atkinson, I. (2017). Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access, 5, 26521–26544.

    Google Scholar 

  47. Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D. (2017). Fog computing in healthcare—A review and discussion. IEEE Access, 5, 9206–9222.

    Google Scholar 

  48. Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

    Google Scholar 

  49. García-Valls, M., Calva-Urrego, C., & García-Fornes, A. (2018). Accelerating smart eHealth services execution at the fog computing infrastructure. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2018.07.001.

  50. Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems, 78, 659–676.

    Google Scholar 

  51. Ahmadi, H., Arji, G., Shahmoradi, L., Safdari, R., Nilashi, M., & Alizadeh, M. (2018). The application of internet of things in healthcare: A systematic literature review and classification. Universal Access in the Information Society, 1–33. https://doi.org/10.1007/s10209-018-0618-4.

  52. Mutlag, A. A., Ghani, M. K. A., Arunkumar, N., Mohamed, M. A., & Mohd, O. (2019). Enabling technologies for fog computing in healthcare IoT systems. Future Generation Computer Systems, 90, 62–78.

    Google Scholar 

  53. Tanwar, S., Tyagi, S., & Kumar, N. (Eds.). (2019). Security and privacy of electronics healthcare records, IET book series on e-Health technologies (pp. 1–450).

    Google Scholar 

  54. Gia, T. N., & Jiang, M. (2019). Exploiting fog computing in health monitoring. In Fog and Edge computing: Principles and paradigms (pp. 291–318).

    Google Scholar 

  55. Forouzan, B. A. (2007). Cryptography & network security. New York, NY: McGraw-Hill.

    Google Scholar 

  56. Ali, F. (2007). IP spoofing. The Internet Protocol Journal, 10(4), 1–9.

    Google Scholar 

  57. Chen, Y., Trappe, W., & Martin, R. P. (2007). Detecting and localizing wireless spoofing attacks. In 2007 4th Annual IEEE Communications Society Conference on sensor, mesh and ad hoc communications and networks. Piscataway, NJ: IEEE.

    Google Scholar 

  58. Wang, H., Xu, L., & Guofei, G. (2015). Floodguard: A dos attack prevention extension in software-defined networks. In 2015 45th Annual IEEE/IFIP International Conference on dependable systems and networks. Piscataway, NJ: IEEE.

    Google Scholar 

  59. Liskov, M., Silverman, R., & Juels, A. (2002). Methods and apparatus for verifying the cryptographic security of a selected private and public key pair without knowing the private key. U.S. Patent No. 6,411,715. Retrieved June 25, 2002.

    Google Scholar 

  60. Challener, D. C., Dayan, R. A., Ward, J. P. & Vanover, M. (2004). Method for associating a password with a secured public/private key pair. U.S. Patent 6,718,468, issued April 6, 2004.

    Google Scholar 

  61. Mahajan, P., & Sachdeva, A. (2013). A study of encryption algorithms AES, DES and RSA for security. Global Journal of Computer Science and Technology, 13(5).

    Google Scholar 

  62. Kaneriya, S., Tanwar, S., Verma, J. P., Tyagi, S., Kumar, N., Obaidat, M. S., et al. (2018). Data consumption-aware load forecasting scheme for smart grid systems. In IEEE Global Communications Conference (IEEE GLOBECOM-2018), Abu Dhabi, UAE, 09-13th Dec (pp. 1–6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deokar, S., Mangla, M., Akhare, R. (2021). A Secure Fog Computing Architecture for Continuous Health Monitoring. In: Tanwar, S. (eds) Fog Computing for Healthcare 4.0 Environments. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46197-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46197-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46196-6

  • Online ISBN: 978-3-030-46197-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics