Skip to main content

Drug Combination Studies, Uniform Experimental Design and Extensions

  • Chapter
  • First Online:
Contemporary Experimental Design, Multivariate Analysis and Data Mining
  • 866 Accesses

Abstract

Drug combination has been an important therapeutic development approach for cancer, viral or microbial infections, and other diseases involving complex biological networks. Synergistic drug combinations, which are more effective than predicted from summing effects of individual drugs, often achieve improved therapeutic index. Because drug-effect is dose-dependent, multiple doses of an individual drug need to be evaluated, giving rapidly escalating number of combinations and a challenging high dimensional statistical modeling problem. The lack of proper design and analysis methods for multi-drug combination studies have resulted in many missed therapeutic opportunities. It is known that, in the presence of model uncertainties, uniform measures that scatter the design points (the dose levels) uniformly in the experiment domain is the best strategy to yield maximum information on the dose response relation. This chapter will review some efficient experimental designs for drug combination studies especially those related to uniform measures and extensions using maximum entropy design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelbasit, K.M., Plackett, R.L.: Experimental design for joint action. Biometrics 38, 171–179 (1982)

    Article  MATH  Google Scholar 

  2. Berenbaum, M.C.: What is synergy? Pharmacol. Rev. 41, 93–141 (1989)

    Google Scholar 

  3. Berenbaum, M.C., Yu, V.L., Felegie, T.P.: Synergy with double and triple antibiotic combinations compared. J. Antimicrob. Chemother. 12, 555–563 (1983)

    Article  Google Scholar 

  4. Calzolari, D., et al.: Search algorithms as a framework for the optimization of drug combinations. PLoS Comput. Biol. 4(12), e1000249 (2008)

    Article  Google Scholar 

  5. Casey, M., Gennings, C., Carter Jr., W.H., et al.: \(D_s\)-Optimal designs for studying combinations of chemicals using multiple fixed-ratio ray experiments. Environmetrics 16, 129–147 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chen, H.X., Dancey, J.E.: Combinations of moleculartargeted therapies: opportunities and challenges. In: Kaufman, H.L., Wadler, S., Antman, K. (eds.) Molecular targeting in oncology, pp. 693–705. Humana Press, New Jersey (2008)

    Chapter  Google Scholar 

  7. Carter Jr., W.H., Gennings, C., Staniswalis, J.G., et al.: A statistical approach to the construction and analysis of isobolograms. J. Am. Coll. Toxicol. 7, 963–973 (1988)

    Article  Google Scholar 

  8. Cox, D.R., Reid, N.: The Theory of the Design of Experiments. Chapman and Hall/CRC, London (2000)

    Book  MATH  Google Scholar 

  9. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)

    Book  MATH  Google Scholar 

  10. Fang, H.B., Chen, X., Pei, X. Y. et al.: Experimental design and statistical analysis for three-drug combination studies. Stat. Methods Med. Res. 26, 1261–1280 (2017)

    Article  MathSciNet  Google Scholar 

  11. Fang, H.B., Huang, H., Clarke, R., Tan, M.: Predicting multi-drug inhibition interactions based on signaling networks and single drug dose-response information. J. Comput. Syst. Biol. 2, 1–9 (2016)

    Google Scholar 

  12. Fang, H.B., Ross, D.D., Sausville, E., Tan, M.: Experimental design and interaction analysis of combination studies of drugs with log-linear dose responses. Stat. Med. 27, 3071–3083 (2008)

    Article  MathSciNet  Google Scholar 

  13. Fang, H.B., Tian, G.L., Li, W., et al.: Design and sample size for evaluating combinations of drugs of linear and loglinear dose response curves. J. Biopharm. Stat. 19, 625–640 (2009)

    Article  MathSciNet  Google Scholar 

  14. Fang, K.T.: Uniform Design and Uniform Design Tables. Science Press, Beijing (1994)

    Google Scholar 

  15. Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, New York (2006)

    MATH  Google Scholar 

  16. Fang, K.T., Lin, D.K.J., Winker, P., Zhang, Y.: Uniform design: theory and application. Technometrics 42, 237–248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Finney, D.J.: Probit Analysis, 3rd edn. Cambridge University Press, London (1971)

    MATH  Google Scholar 

  18. Fitzgerald, J.B., Schoeberl, B., Nielsen, U.B., et al.: Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2, 458–466 (2006)

    Article  Google Scholar 

  19. Gennings, C., Carter Jr., W.H., Carney, E.W., et al.: A novel flexible approach for evaluating fixed ratio mixtures of full and partial agonists. Toxicol. Sci. 80, 134–150 (2004)

    Article  Google Scholar 

  20. Greco, W.R., Bravo, G., Parsons, J.C.: The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995)

    Google Scholar 

  21. Hait, W.N.: Targeted cancer therapeutics. Cancer Res. 69, 1263–1267 (2009)

    Article  Google Scholar 

  22. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299–322 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hopkins, A.L.: Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690 (2008)

    Article  Google Scholar 

  24. Huang, H., Fang, H.B., Tan, M.T.: Experimental design for multi-drug combination studies using signaling networks. Biometrics 74, 538–547 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laska, E.M., Meisner, M., Siegel, C.: Simple designs and model-free tests for synergy. Biometrics 50, 834–841 (1994)

    Article  MATH  Google Scholar 

  26. Lindley, D.V.: On a measure of information provided by an experiment. Ann. Math. Stat. 27, 986–1005 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loewe, S.: Isobols of dose-effect relations in the combination of pentylenetetrazole and phenobarbital. J. Pharmacol. Exp. Ther. 114, 185–191 (1955)

    Google Scholar 

  28. Meadows, S.L., Gennings, C., Carter Jr., W.H., Bae, D.S.: Experimental design for mixtures of chemicals along fixed ratio rays. Environ. Health Perspect. 110, 979–983 (2002)

    Article  Google Scholar 

  29. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  MATH  Google Scholar 

  30. Shiozawa, K., Nakanishi, T., Tan, M., et al.: Preclinical studies of vorinostat (suberoylanilide hydroxamic acid, saha) combined with cytosine arabinoside (ara-c) and etoposide for treatment of acute leukemias. Clin. Cancer Res. 15, 1698–1707 (2009)

    Article  Google Scholar 

  31. Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sobol’, I.M.: Theorems and examples on high dimensional model representation. Reliab. Eng. Syst. Safety 79, 187–193 (2003)

    Article  Google Scholar 

  33. Straetemans, R., O’Brien, T., Wouters, L. et al.: Design and analysis of drug combination experiments. Biom. J. 47, 299–308 (2005)

    Article  MathSciNet  Google Scholar 

  34. Syracuse, K.C., Greco, W.R.: Comparison between the method of Chou and Talalay and a new method for the assessment of the combined effects of drugs: a Monte-Carlo simulation study. In: American Statistical Association Proceedings of the Biopharmaceutical Section, pp. 127–132 (1986)

    Google Scholar 

  35. Tallarida, R.J.: Drug Synergism and Dose-effect Data Analysis. Chapman and Hall/CRC, New York (2000)

    Book  Google Scholar 

  36. Tallarida, R.J., Stone, D.J., Raffa, R.B.: Efficient designs for studying synergistic drug combinations. Life Sci. 61, 417–425 (1997)

    Article  Google Scholar 

  37. Tan, M., Fang, H.B., Tian, G.L., Houghton, P.J.: Experimental design and sample size determination for drug combination studies based on uniform measures. Stat. Med. 22, 2091–2100 (2003)

    Article  Google Scholar 

  38. Tan, M., Fang, H.B., Tian, G.L.: Dose and sample size determination for multi-drug combination studies. Stat. Biopharm. Res. 1, 301–316 (2009)

    Article  Google Scholar 

  39. Tian, G.L., Fang, H.B., Tan, M., et al.: Uniform distributions in a class of convex polyhedrons with applications to drug combination studies. J. Multi. Anal. 100, 1854–1865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wan, W., Pei, X.Y., Grant, S.: Nonlinear response surface in the study of interaction analysis of three combination drugs. Biom. J. 59, 9–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wiens, D.P.: Designs for approximately linear regression: two optimality properties of uniform designs. Stat. Probab. Lett. 12, 217–221 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xavier, J.B., Sander, C.: Principle of system balance for drug interactions. New Engl. J. Med. 362, 1339–1340 (2010)

    Article  Google Scholar 

  43. Yang, Y., Fang, H.B., Roy, A., Tan, M.: Adaptive oncology phase I trial design of drug combinations with drug-drug interaction modeling. Stat. Interface 11, 109–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yin, G., Yuan, Y.: A latent contingency table approach to dose finding for combinations of two agents. Biometrics 65, 866–875 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yin, G., Yuan, Y.: Bayesian dose finding in oncology for drug combinations by copula regression. J. R. Stat. Soc. Ser. C (Appl. Stat.) 58, 211–224 (2009)

    Article  MathSciNet  Google Scholar 

  46. Yuan, Y., Yin, G.: Sequential continual reassessment method for two-dimensional dose finding. Stat. Med. 27, 5664–5678 (2008)

    Article  MathSciNet  Google Scholar 

  47. Zhang, A.: Schur-convex discrimination of designs using power and exponential kernels. In: Fan, J., Li, G. (eds.) Contemporary Multivariate Analysis and Experimental Design, pp. 293–311. World Scientific Publisher, Singapore (2005)

    Chapter  Google Scholar 

  48. Zhang, A., Fang, K.T., Li, R., Sudjianto, A.: Majorization framework for balanced lattice designs. Ann. Stat. 33, 2837–2853 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the National Cancer Institute (NCI) grant R01CA164717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming T. Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, M.T., Fang, HB. (2020). Drug Combination Studies, Uniform Experimental Design and Extensions. In: Fan, J., Pan, J. (eds) Contemporary Experimental Design, Multivariate Analysis and Data Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-46161-4_8

Download citation

Publish with us

Policies and ethics