We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Estimating the Location Vector for Spherically Symmetric Distributions

  • Chapter
  • First Online:
Contemporary Experimental Design, Multivariate Analysis and Data Mining
  • 817 Accesses

Abstract

When a \(p\times 1\) random vector \(\mathbf{X}\) has a spherically symmetric distribution with the location vector \({\varvec{\theta }},\) Brandwein and Strawderman [7] proved that estimators of the form \(\mathbf{X}+a\mathbf{g}(\mathbf{X})\) dominate the \(\mathbf{X}\) under quadratic loss if the following conditions hold: (i) \(||\mathbf{g}||^2/2\le -h\le -\triangledown \circ \mathbf{g},\) where \(-h\) is superharmonic, (ii) \(E[-R^2h(\mathbf{V})]\) is nondecreasing in R,  where \(\mathbf{V}\) has a uniform distribution in the sphere centered at \(\varvec{\theta }\) with a radius \(R=||\mathbf{X}-{\varvec{\theta }}||,\) and (iii) \(0<a\le 1/[pE(R^{-2})].\) In this paper we not only use a weaker condition than their (ii) to show the dominance of \(\mathbf{X}+a\mathbf{g}(\mathbf{X})\) over the \(\mathbf{X},\) but also obtain a new bound \(E(R)/[pE(R^{-1})]\) for a,  which is always better than bounds obtained by Brandwein and Strawderman [7] and Xu and Izmirlian [24]. The generalization to concave loss function is also considered. In addition, estimators of the location vector are investigated when the observation contains a residual vector and the scale is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bock, M.E.: Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions. J. Multivariate Anal. 17, 127–147 (1985)

    Article  MathSciNet  Google Scholar 

  2. Brandwein, A.C.: Minimax estimation of mean of spherically symmetric distributions under general quadratic loss. J. Multivariate Anal. 9, 579–588 (1979)

    Article  MathSciNet  Google Scholar 

  3. Brandwein, A.C., Strawderman, W.E.: Minimax estimation of location parameters for spherically symmetric unimodal distributions under quadratic loss. Ann. Statist. 6, 377–416 (1978)

    Article  MathSciNet  Google Scholar 

  4. Brandwein, A.C., Strawderman, W.E.: Minimax estimation of location parameters for spherically symmetric distributions with concave loss. Ann. Statist. 8, 279–284 (1980)

    Article  MathSciNet  Google Scholar 

  5. Brandwein, A.C., Strawderman, W.E.: Stein estimation, The spherically symmetric case. Statist. Sci. 5, 356–369 (1990)

    Article  MathSciNet  Google Scholar 

  6. Brandwein, A.C., Strawderman, W.E.: Stein estimation for spherically symmetric distributions: recent developments. Statist. Sci. 27, 11–23 (2012)

    Article  MathSciNet  Google Scholar 

  7. Brandwein, A.C., Strawderman, W.E.: Generalizations of James-Stein estimators under spherical symmetry. Ann. Statist. 19, 1639–1650 (1991)

    Article  MathSciNet  Google Scholar 

  8. Brown, L.D.: On the admissibility of invariant estimators of one or more location parameters. Ann. Math. Statist. 37, 1087–1136 (1966)

    Article  MathSciNet  Google Scholar 

  9. Brown, L.D., Zhao, L.H.: A geometrical explanation of Stein shrinkage. Statist. Sci. 27, 24–30 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cellier, D., Fourdrinier, D., Robert, C.: Robust shrinkage estimators of the location parameter for elliptically symmetric distributions. J. Multivariate Anal. 29, 39–52 (1988)

    Article  MathSciNet  Google Scholar 

  11. Du Plessis, N.: An Introduction to Potential Theory. Hafner, Darien, CT (1970)

    MATH  Google Scholar 

  12. Fan, J., Fang, K.-T.: Inadmissibility of sample mean and sample regression coefficients for elliptically contoured distributions. In: Fang, K.-T., Anderson, T.W. (eds.) Statistical Inference in Elliptically Contoured and Related Distributions, pp. 275–290. Allerton Press Inc., New York (1990)

    Google Scholar 

  13. Fan, J., Fang, K.-T.: Inadmissibility of the usual estimator for the location parameters of spherically symmetric distributions. In: Fang, K.-T., Anderson, T.W. (eds.) Statistical Inference in Elliptically Contoured and Related Distributions, pp. 291–297. Allerton Press Inc., New York (1990)

    Google Scholar 

  14. Fan, J., Fang, K.-T.: Shrinkage estimators and ridge regression estimators for elliptically contoured distributions. In: Fang, K.-T., Anderson, T.W. (eds.) Statistical Inference in Elliptically Contoured and Related Distributions, pp. 313–326. Allerton Press Inc., New York (1990)

    Google Scholar 

  15. James, W., Stein, C.: Estimation with quadratic loss. Proc. Fourth Berkeley Sympos. Math. Statist. Prob. 1, 361–379 (1961)

    Google Scholar 

  16. Maruyama, Y.: Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions. J. Multivariate Anal. 84, 274–283 (2003)

    Article  MathSciNet  Google Scholar 

  17. Miceli, R.J., Strawderman, W.E.: Minimax estimation for certain independent component distributions under weighted squared error loss. Comm. Statist. Theory Methods 15, 2191–2200 (1986)

    Article  MathSciNet  Google Scholar 

  18. Shinozaki, N.: Simultaneous estimation of location parameters under quadratic loss. Ann. Statist. 12, 322–335 (1984)

    Article  MathSciNet  Google Scholar 

  19. Stein, C.: Inadmissibility of the usual estimator for the mean vector of a multivariate normal distribution. Proc. Third Berkeley Sympos. Math. Statist. Prob. 1, 197–206 (1956)

    Google Scholar 

  20. Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135–1151 (1981)

    Article  MathSciNet  Google Scholar 

  21. Tosh, C., Dasgupta, S.: Maximum likelihood estimation for mixtures of spherical Gaussians is NP-hard. J. Mach. Learn. Res. 18, 1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Wijsman, R.A.: A useful inequality on ratios of integrals, with application to maximum likelihood estimation. J. Amer. Statist. Assoc. 80, 472–475 (1985)

    Article  MathSciNet  Google Scholar 

  23. Xu, J.-L.: Simultaneous estimation of location parameters for sign-invariant distributions. Ann. Statist. 25, 2259–2272 (1997)

    Article  MathSciNet  Google Scholar 

  24. Xu, J.-L., Izmirlian, G.: Estimation of location parameters for spherically symmetric distributions. J. Multivariate Anal. 97, 514–525 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Lun Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, JL. (2020). Estimating the Location Vector for Spherically Symmetric Distributions. In: Fan, J., Pan, J. (eds) Contemporary Experimental Design, Multivariate Analysis and Data Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-46161-4_13

Download citation

Publish with us

Policies and ethics