Skip to main content

A Soft Affiliation Graph Model for Scalable Overlapping Community Detection

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

  • 2125 Accesses

Abstract

We propose an overlapping community model based on the Affiliation Graph Model (AGM), that exhibits the pluralistic homophily property that the probability of a link between nodes increases with increasing number of shared communities. We take inspiration from the Mixed Membership Stochastic Blockmodel (MMSB), in proposing an edgewise community affiliation. This allows decoupling of community affiliations between nodes, opening the way to scalable inference. We show that our model corresponds to an AGM with soft community affiliations and develop a scalable algorithm based on a Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) sampler. Empirical results show that the model can scale to network sizes that are beyond the capabilities of MCMC samplers of the standard AGM. We achieve comparable performance in terms of accuracy and run-time efficiency to scalable MMSB samplers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/nishma-laitonjam/S-AGM.

References

  1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9(Sep), 1981–2014 (2008)

    MATH  Google Scholar 

  3. Butland, G., et al.: Interaction network containing conserved and essential protein complexes in escherichia coli. Nature 433(7025), 531 (2005)

    Article  Google Scholar 

  4. Corman, S.R., Kuhn, T., McPhee, R.D., Dooley, K.J.: Studying complex discursive systems. Centering resonance analysis of communication. Hum. Commun. Res. 28(2), 157–206 (2002)

    Google Scholar 

  5. El-Helw, I., Hofman, R., Bal, H.E.: Towards fast overlapping community detection. In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 175–178. IEEE (2016)

    Google Scholar 

  6. Evans, T.S.: Clique graphs and overlapping communities. J. Stat. Mech: Theory Exp. 2010(12), P12037 (2010)

    Article  Google Scholar 

  7. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Software Pract. Exper. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  8. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. Roy. Stat. Soc. B (Stat. Methodol.) 73(2), 123–214 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gopalan, P.K., Gerrish, S., Freedman, M., Blei, D.M., Mimno, D.M.: Scalable inference of overlapping communities. In: Advances in Neural Information Processing Systems, pp. 2249–2257 (2012)

    Google Scholar 

  10. Gschwind, T., Irnich, S., Furini, F., et al.: Social network analysis and community detection by decomposing a graph into relaxed cliques. Technical report (2015)

    Google Scholar 

  11. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

    Article  Google Scholar 

  12. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discovery Data (TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  13. Li, W., Ahn, S., Welling, M.: Scalable MCMC for mixed membership stochastic blockmodels. In: Artificial Intelligence and Statistics, pp. 723–731 (2016)

    Google Scholar 

  14. Miller, K., Jordan, M.I., Griffiths, T.L.: Nonparametric latent feature models for link prediction. In: Advances in neural information processing systems, pp. 1276–1284 (2009)

    Google Scholar 

  15. Mørup, M., Schmidt, M.N., Hansen, L.K.: Infinite multiple membership relational modeling for complex networks. In: 2011 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2011)

    Google Scholar 

  16. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida free association, rhyme, and word fragment norms. Behav. Res. Methods Instrum. Comput. 36(3), 402–407 (2004)

    Article  Google Scholar 

  17. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  18. Patterson, S., Teh, Y.W.: Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In: Advances in Neural Information Processing Systems, pp. 3102–3110 (2013)

    Google Scholar 

  19. Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approximations to Langevin diffusions. J. Roy. Stat. Soc. B (Stat. Methodol.) 60(1), 255–268 (1998)

    Article  MathSciNet  Google Scholar 

  20. Traud, A.L., Frost, C., Mucha, P.J., Porter, M.A.: Visualization of communities in networks. Chaos Interdisc. J. Nonlinear Sci. 19(4), 041104 (2009)

    Article  Google Scholar 

  21. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688 (2011)

    Google Scholar 

  22. Yang, J., Leskovec, J.: Community-affiliation graph model for overlapping network community detection. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 1170–1175. IEEE (2012)

    Google Scholar 

  23. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 587–596. ACM (2013)

    Google Scholar 

  24. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2013). https://doi.org/10.1007/s10115-013-0693-z

    Article  Google Scholar 

  25. Zhou, M.: Infinite edge partition models for overlapping community detection and link prediction. In: Artificial Intelligence and Statistics (AISTATS), pp. 1135–1143 (2015)

    Google Scholar 

Download references

Acknowledgments

This project has been funded by Science Foundation Ireland under Grant No. SFI/12/RC/2289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishma Laitonjam .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 206 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laitonjam, N., Huáng, W., Hurley, N.J. (2020). A Soft Affiliation Graph Model for Scalable Overlapping Community Detection. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics