Skip to main content

User-Guided Clustering in Heterogeneous Information Networks via Motif-Based Comprehensive Transcription

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

Abstract

Heterogeneous information networks (HINs) with rich semantics are ubiquitous in real-world applications. For a given HIN, many reasonable clustering results with distinct semantic meaning can simultaneously exist. User-guided clustering is hence of great practical value for HINs where users provide labels to a small portion of nodes. To cater to a broad spectrum of user guidance evidenced by different expected clustering results, carefully exploiting the signals residing in the data is potentially useful. Meanwhile, as one type of complex networks, HINs often encapsulate higher-order interactions that reflect the interlocked nature among nodes and edges. Network motifs, sometimes referred to as meta-graphs, have been used as tools to capture such higher-order interactions and reveal the many different semantics. We therefore approach the problem of user-guided clustering in HINs with network motifs. In this process, we identify the utility and importance of directly modeling higher-order interactions without collapsing them to pairwise interactions. To achieve this, we comprehensively transcribe the higher-order interaction signals to a series of tensors via motifs and propose the MoCHIN model based on joint non-negative tensor factorization. This approach applies to arbitrarily many, arbitrary forms of HIN motifs. An inference algorithm with speed-up methods is also proposed to tackle the challenge that tensor size grows exponentially as the number of nodes in a motif increases. We validate the effectiveness of the proposed method on two real-world datasets and three tasks, and MoCHIN outperforms all baselines in three evaluation tasks under three different metrics. Additional experiments demonstrated the utility of motifs and the benefit of directly modeling higher-order information especially when user guidance is limited. (The code and the data are available at https://github.com/NoSegfault/MoCHIN.)

Y. Shi, X. He, and N. Zhang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Higher-order interaction is sometimes used interchangeably with high-order interaction in the literature, and clustering using signals from higher-order interactions is referred to as higher-order clustering [2, 36]. Motifs in the context of HINs are sometimes called the meta-graphs, and we opt for motifs primarily because meta-graphs have been used under a different definition in the study of clustering [27].

References

  1. Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.: Efficient graphlet counting for large networks. In: ICDM (2015)

    Google Scholar 

  2. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)

    Article  Google Scholar 

  3. Carranza, A.G., Rossi, R.A., Rao, A., Koh, E.: Higher-order spectral clustering for heterogeneous graphs. arXiv preprint arXiv:1810.02959 (2018)

  4. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIMAX 21(4), 1253–1278 (2000)

    Article  MathSciNet  Google Scholar 

  5. Fang, Y., Lin, W., Zheng, V.W., Wu, M., Chang, K.C.C., Li, X.L.: Semantic proximity search on graphs with metagraph-based learning. In: ICDE. IEEE (2016)

    Google Scholar 

  6. Gujral, E., Papalexakis, E.E.: SMACD: semi-supervised multi-aspect community detection. In: ICDM (2018)

    Google Scholar 

  7. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  8. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure: computing relevance in large heterogeneous information networks. In: KDD. ACM (2016)

    Google Scholar 

  9. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 570–586. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_42

    Chapter  Google Scholar 

  10. Jiang, H., Song, Y., Wang, C., Zhang, M., Sun, Y.: Semi-supervised learning over heterogeneous information networks by ensemble of meta-graph guided random walks. In: AAAI (2017)

    Google Scholar 

  11. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  12. Li, P., Milenkovic, O.: Inhomogeneous hypergraph clustering with applications. In: NIPS (2017)

    Google Scholar 

  13. Li, X., Wu, Y., Ester, M., Kao, B., Wang, X., Zheng, Y.: Semi-supervised clustering in attributed heterogeneous information networks. In: WWW (2017)

    Google Scholar 

  14. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: SDM, vol. 13, pp. 252–260. SIAM (2013)

    Google Scholar 

  15. Liu, Z., Zheng, V.W., Zhao, Z., Li, Z., Yang, H., Wu, M., Ying, J.: Interactive paths embedding for semantic proximity search on heterogeneous graphs. In: KDD (2018)

    Google Scholar 

  16. Liu, Z., Zheng, V.W., Zhao, Z., Zhu, F., Chang, K.C.C., Wu, M., Ying, J.: Distance-aware DAG embedding for proximity search on heterogeneous graphs. AAAI (2018)

    Google Scholar 

  17. Luo, C., Pang, W., Wang, Z.: Semi-supervised clustering on heterogeneous information networks. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 548–559. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06605-9_45

    Chapter  Google Scholar 

  18. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  19. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data fusion: models, applications, and scalable algorithms. TIST 8(2), 16 (2017)

    Article  Google Scholar 

  20. Sankar, A., Zhang, X., Chang, K.C.C.: Motif-based convolutional neural network on graphs. arXiv preprint arXiv:1711.05697 (2017)

  21. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. TKDE 29(1), 17–37 (2017)

    Google Scholar 

  22. Shi, C., Wang, R., Li, Y., Yu, P.S., Wu, B.: Ranking-based clustering on general heterogeneous information networks by network projection. In: CIKM (2014)

    Google Scholar 

  23. Shi, Y., Chan, P.W., Zhuang, H., Gui, H., Han, J.: PReP: path-based relevance from a probabilistic perspective in heterogeneous information networks. In: KDD (2017)

    Google Scholar 

  24. Shi, Y., Gui, H., Zhu, Q., Kaplan, L., Han, J.: AspEm: embedding learning by aspects in heterogeneous information networks. In: SDM (2018)

    Google Scholar 

  25. Shi, Y., Zhu, Q., Guo, F., Zhang, C., Han, J.: Easing embedding learning by comprehensive transcription of heterogeneous information networks. In: KDD (2018)

    Google Scholar 

  26. Stefani, L.D., Epasto, A., Riondato, M., Upfal, E.: Triest: counting local and global triangles in fully dynamic streams with fixed memory size. TKDD 11(4), 43 (2017)

    Article  Google Scholar 

  27. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. JMLR 3(Dec), 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. SIGKDD Explor. 14(2), 20–28 (2013)

    Article  Google Scholar 

  29. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P.S., Yu, X.: Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In: KDD (2012)

    Google Scholar 

  30. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information networks with star network schema. In: KDD, pp. 797–806. ACM (2009)

    Google Scholar 

  31. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: KDD (2008)

    Google Scholar 

  32. Wu, J., Wang, Z., Wu, Y., Liu, L., Deng, S., Huang, H.: A tensor CP decomposition method for clustering heterogeneous information networks via stochastic gradient descent algorithms. Sci. Program. 2017, 1–13 (2017)

    Google Scholar 

  33. Yang, C., Feng, Y., Li, P., Shi, Y., Han, J.: Meta-graph based HIN spectral embedding: methods, analyses, and insights. In: ICDM (2018)

    Google Scholar 

  34. Yang, C., Liu, M., Zheng, V.W., Han, J.: Node, motif and subgraph: leveraging network functional blocks through structural convolution. In: ASONAM (2018)

    Google Scholar 

  35. Yaveroğlu, Ö.N., et al.: Revealing the hidden language of complex networks. Sci. Rep. 4, 4547 (2014)

    Article  Google Scholar 

  36. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clustering. In: KDD (2017)

    Google Scholar 

  37. Zhao, H., Xu, X., Song, Y., Lee, D.L., Chen, Z., Gao, H.: Ranking users in social networks with higher-order structures. In: AAAI (2018)

    Google Scholar 

  38. Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.L.: Meta-graph based recommendation fusion over heterogeneous information networks. In: KDD (2017)

    Google Scholar 

  39. Zhou, D., et al.: A local algorithm for structure-preserving graph cut. In: KDD (2017)

    Google Scholar 

Download references

Acknowledgments

This work was sponsored in part by U.S. Army Research Lab. under Cooperative Agreement No. W911NF-09-2-0053 (NSCTA), DARPA under Agreement No. W911NF-17-C-0099, National Science Foundation IIS 16-18481, IIS 17-04532, and IIS-17-41317, DTRA HDTRA11810026, and grant 1U54GM114838 awarded by NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov). Any opinions, findings, and conclusions or recommendations expressed in this document are those of the author(s) and should not be interpreted as the views of any U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Shi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 695 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., He, X., Zhang, N., Yang, C., Han, J. (2020). User-Guided Clustering in Heterogeneous Information Networks via Motif-Based Comprehensive Transcription. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics