Skip to main content

Exploiting the Earth’s Spherical Geometry to Geolocate Images

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Abstract

Existing methods for geolocating images use standard classification or image retrieval techniques. These methods have poor theoretical properties because they do not take advantage of the earth’s spherical geometry. In some cases, they require training data sets that grow exponentially with the number of feature dimensions. This paper introduces the Mixture of von-Mises Fisher (MvMF) loss function, which is the first loss function that exploits the earth’s spherical geometry to improve geolocation accuracy. We prove that this loss requires only a dataset of size linear in the number of feature dimensions, and empirical results show that our method outperforms previous methods with orders of magnitude less training data and computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original PlaNet paper chose a value of \(c\approx 2^{15}\).

  2. 2.

    The dataset originally contained about 14 million images, but many of them have since been deleted from Flickr and so were unavailable to us.

References

  1. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: CVPR, June 2016

    Google Scholar 

  2. Bachrach, Y., et al.: Speeding up the Xbox recommender system using a Euclidean transformation for inner-product spaces. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 257–264. ACM (2014)

    Google Scholar 

  3. Carreira-Perpinan, M.A.: Mode-finding for mixtures of gaussian distributions. TPAMI 22(11), 1318–1323 (2000)

    Article  Google Scholar 

  4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AIStats, pp. 249–256 (2010)

    Google Scholar 

  5. Gopal, S., Yang, Y.: Von Mises-Fisher clustering models. In: ICML, pp. 154–162 (2014)

    Google Scholar 

  6. Hasnat, M., Bohné, J., Milgram, J., Gentric, S., Chen, L., et al.: von Mises-Fisher mixture model-based deep learning: application to face verification. arXiv preprint arXiv:1706.04264 (2017)

  7. Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: CVPR. IEEE (2008)

    Google Scholar 

  8. Hays, J., Efros, A.A.: Large-scale image geolocalization. In: Choi, J., Friedland, G. (eds.) Multimodal Location Estimation of Videos and Images, pp. 41–62. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09861-6_3

    Chapter  Google Scholar 

  9. Hazan, E., Koren, T., Levy, K.Y.: Logistic regression: tight bounds for stochastic and online optimization. In: COLT (2014)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  11. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? arXiv preprint arXiv:1805.08974 (2018)

  13. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  14. Mousselly-Sergieh, H., Watzinger, D., Huber, B., Döller, M., Egyed-Zsigmond, E., Kosch, H.: World-wide scale geotagged image dataset for automatic image annotation and reverse geotagging. In: MMSys, 2014

    Google Scholar 

  15. Muller-Budack, E., Pustu-Iren, K., Ewerth, R.: Geolocation estimation of photos using a hierarchical model and scene classification. In: ECCV (2018)

    Google Scholar 

  16. Seo, P.H., Weyand, T., Sim, J., Han, B.: CPlaNet: enhancing image geolocalization by combinatorial partitioning of maps. arXiv preprint arXiv:1808.02130 (2018)

  17. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  21. Vo, N., Jacobs, N., Hays, J.: Revisiting IM2GPS in the deep learning era. In: ICCV, pp. 2640–2649. IEEE (2017)

    Google Scholar 

  22. Weyand, T., Kostrikov, I., Philbin, J.: PlaNet - Photo Geolocation with Convolutional Neural Networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 37–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_3

    Chapter  Google Scholar 

  23. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

Download references

Acknowledgments

We thank an anonymous reviewer for identifying a mistake in the first version of our proof. E. Papalexakis was supported by the Department of the Navy, Naval Engineering Education Consortium under award no. N00174-17-1-0005 and the National Science Foundation CDS&E Grant no. OAC-1808591. V. Tsotras was supported by National Science Foundation grants IIS-1527984 and SES-1831615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Izbicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Izbicki, M., Papalexakis, E.E., Tsotras, V.J. (2020). Exploiting the Earth’s Spherical Geometry to Geolocate Images. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11907. Springer, Cham. https://doi.org/10.1007/978-3-030-46147-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46147-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46146-1

  • Online ISBN: 978-3-030-46147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics