Motte, H., Wyffels, J., De Strycker, L., Goemaere, J.-P.: Evaluating GPS data in indoor environments. Adv. Electr. Comput. Eng. 11(3), 25–28 (2011). https://doi.org/10.4316/AECE.2011.03004
CrossRef
Google Scholar
Sakpere, W., Adeyeye Oshin, M., Mlitwa, N.B.: A state-of-the-art survey of indoor positioning and navigation systems and technologies. South Afr. Comput. J. 29(3), 145–197 (2017)
Google Scholar
Zafari, F., Gkelias, A., Leung, K.: A survey of indoor localization systems and technologies. arXiv:1709.01015v3 (2019)
Brena, R.F., García-Vázquez, J.P., et al.: Evolution of indoor positioning technologies: a survey. J. Sens. 2017, 21 (2017)
CrossRef
Google Scholar
Dhital, A., Closas, P., Fernández-Prades, C.: Bayesian filters for indoor localization using wireless sensor networks. In: 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). Noordwijk, vol. 2010, pp. 1–7 (2010)
Google Scholar
Moreno-Cano, M.V., Zamora-Izquierdo, M.A., Santa, J., Skarmeta, A.F.: An indoor localization system based on artificial neural networks and particle filters applied to intelligent buildings. Neurocomput. 122, 116–125 (2013)
CrossRef
Google Scholar
Li, X., Cao, Y., Chen, C.: Machine learning based high accuracy indoor visible light location algorithm. In: 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), Xi’an, pp. 198–203 (2018). https://doi.org/10.1109/SmartIoT.2018.00043
Lin, K., Chen, M., Deng, J., Hassan, M.M., Fortino, G.: Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Trans. Autom. Sci. Eng. 13(3), 1294–1307 (2016)
CrossRef
Google Scholar
Indoor Google Maps. http://maps.google.com/help/maps/indoormaps/. Accessed Jan 2014
Chruszczyk, L.: Statistical analysis of indoor RSSI read-outs for 433 MHz, 868 MHz, 2.4 GHz and 5 GHz ISM bands. Int. J. Electron. Telecommun. 63(1), 33–38 (2017)
CrossRef
Google Scholar
Kaji, K., Kawaguchi, N.: Design and implementation of WiFi indoor localization based on Gaussian mixture model and particle filter. In: 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, pp. 1–9 (2012)
Google Scholar
Park, J.-G., et al.: Growing an organic indoor location system. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys 2010), pp. 271–284. ACM, New York (2010)
Google Scholar