Skip to main content

A Virtualized Video Surveillance System for Public Transportation

  • 995 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11908)

Abstract

Modern surveillance systems have recently started to employ computer vision algorithms for advanced analysis of the captured video content. Public transportation is one of the domains that may highly benefit from the advances in video analysis. This paper presents a video-based surveillance system that uses a deep neural network based face verification algorithm to accurately and robustly re-identify a subject person. Our implementation is highly scalable due to its container-based architecture and is easily deployable on a cloud platform to support larger processing loads. During the demo, the users will be able to interactively select a target person from pre-recorded surveillance videos and inspect the results on our web-based visualization platform.

Keywords

  • Video-based security
  • Surveillance
  • Face verification

This research has received funding from the German Federal Ministry for Economic Affairs and Energy under the VIRTUOSE-DE project.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-46133-1_50
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-46133-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Camps, O., et al.: From the lab to the real world: re-identification in an airport camera network. IEEE Trans. Circuits Syst. Video Technol. 27(3), 540–553 (2017)

    CrossRef  Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  3. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    CrossRef  Google Scholar 

  4. Neal, D., Rahman, S.: Video surveillance in the cloud? arXiv preprint arXiv:1512.00070 (2015)

  5. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  6. Ye, Y., Ci, S., Katsaggelos, A.K., Liu, Y., Qian, Y.: Wireless video surveillance: a survey. IEEE Access 1, 646–660 (2013)

    CrossRef  Google Scholar 

  7. Zhang, T., Chowdhery, A., Bahl, P.V., Jamieson, K., Banerjee, S.: The design and implementation of a wireless video surveillance system. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 426–438. ACM (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talmaj Marinč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Marinč, T., Gül, S., Hellge, C., Schüßler, P., Riegel, T., Amon, P. (2020). A Virtualized Video Surveillance System for Public Transportation. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11908. Springer, Cham. https://doi.org/10.1007/978-3-030-46133-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46133-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46132-4

  • Online ISBN: 978-3-030-46133-1

  • eBook Packages: Computer ScienceComputer Science (R0)