Skip to main content

Impact of Climate Change on Crop Production: Effects and Management

  • Chapter
  • First Online:
Crop Protection Under Changing Climate

Abstract

Climate change is one of the major challenges to global food security in the twenty-first century. There is a need to produce more food for the rapidly growing human population; however, this is being challenged by the growing anthropogenic pressure on natural resources and uncertain impacts of climate change on global agriculture. Generally, climate change encompasses but not limited to changes in atmospheric CO2 concentration, air temperature and precipitation dynamics, all of which are vital for crop production. The effects of these climatic variables on crop production processes are complex and generally more challenging to deal with if different variables are combined. To ensure food security for the increasing population, we must adopt different strategies that would increase the resilience and sustainability of crop production under climate change. This chapter summarizes the major effects of climatic variables on crop production and feasible strategies to adapt to the changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos:111

    Google Scholar 

  • Al-Kaisi MM, Kruse ML, Sawyer JE (2008) Effect of nitrogen fertilizer application on growing season soil carbon dioxide emission in a corn–soybean rotation. J Environ Qual 37:325–332

    Article  CAS  PubMed  Google Scholar 

  • Ashby JA (2009) The impact of participatory plant breeding. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 649–671

    Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball B, Ottman MJ, Wall G, White JW (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143

    Article  Google Scholar 

  • Bellon MR, van Etten J (2014) Climate change and on-farm conservation of crop landraces in centres of diversity. Plant Genet Resour Clim Chang:137–150

    Google Scholar 

  • Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci 108:13432–13437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitew Y, Abera M (2018) Conservation agriculture based annual intercropping system for sustainable crop production: a review. Indian J Ecol 45:235–249

    Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T (2010) Cassava: the drought, war and famine crop in a changing world. Sustainability 2:3572–3607

    Article  Google Scholar 

  • Cape J (2008) Surface ozone concentrations and ecosystem health: past trends and a guide to future projections. Sci Total Environ 400:257–269

    Article  CAS  PubMed  Google Scholar 

  • Chavan SG, Duursma RA, Tausz M, Ghannoum O (2019) Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J Exp Bot 70:6447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuwah C, van Noije T, van Vuuren DP, Stehfest E, Hazeleger W (2015) Global impacts of surface ozone changes on crop yields and land use. Atmos Environ 106:11–23

    Article  CAS  Google Scholar 

  • Cooper P, Dimes J, Rao K, Shapiro B, Shiferaw B, Twomlow S (2008) Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: an essential first step in adapting to future climate change? Agric Ecosyst Environ 126:24–35

    Article  Google Scholar 

  • Corsi S, Friedrich T, Kassam A, Pisante M, Sá J (2012) Soil organic carbon accumulation and carbon budget in conservation agriculture: a review of evidence. Integr Crop Manag:16

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci U S A 97:13430–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65

    Article  Google Scholar 

  • De Graaff MA, Van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091

    Article  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179

    Article  CAS  Google Scholar 

  • Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36

    Google Scholar 

  • Eckersten H, Blombäck K, Kätterer T, Nyman P (2001) Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden. Agric Ecosyst Environ 86:221–235

    Article  CAS  Google Scholar 

  • Efisue A, Tongoona P, Derera J, Langyintuo A, Laing M, Ubi B (2008) Farmers’ perceptions on rice varieties in Sikasso region of Mali and their implications for rice breeding. J Agron Crop Sci 194:393–400

    Article  Google Scholar 

  • Farooq M, Flower K, Jabran K, Wahid A, Siddique KH (2011) Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res 117:172–183

    Article  Google Scholar 

  • Farooq M, Hussain M, Siddique KH (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    Article  CAS  Google Scholar 

  • Faurès J-M, Bernardi M, Gommes R (2010) There is no such thing as an average: how farmers manage uncertainty related to climate and other factors. Int J Water Resour Dev 26:523–542

    Article  Google Scholar 

  • Faurès J, Bartley D, Bazza M, Burke J, Hoogeveen J, Soto D, Steduto PJF (2013) Climate smart agriculture sourcebook. FAO, Rome, p 557

    Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:2696–2708

    Article  Google Scholar 

  • Field CB, Barros V, Stocker TF, Dahe Q (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Book  Google Scholar 

  • Folke C (2006) Resilience: the emergence of a perspective for social–ecological systems analyses. Glob Environ Chang 16:253–267

    Article  Google Scholar 

  • Gál A, Vyn TJ, Michéli E, Kladivko EJ, McFee WW (2007) Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil Tillage Res 96:42–51

    Article  Google Scholar 

  • Ghosh P, Hazra K (2014) Constraints, issues and opportunities of RCT in pulse based cropping systems. Resour Conserv Technol Pulses: 18–30

    Google Scholar 

  • Gibbon D (2012) Save and grow: a policymaker’s guide to the sustainable intensification of smallholder crop production. Food and Agriculture Organization of the United Nations, Rome, p 112. US $45.00. ISBN:978-92-5-106871-7. Exp Agric 48:154–154

    Google Scholar 

  • Gommes R, Acunzo M, Baas S, Bernardi M, Jost S, Mukhala E, Ramasamy S (2010) Communication approaches in applied agrometeorology. In: Applied agrometeorology. Springer, Berlin, pp 263–286

    Chapter  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska L, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Howden SM, Soussana J-F, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104:19691–19696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Izaurralde RC, Rosenberg NJ, Brown RA, Thomson AM (2003) Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States: Part II. Regional agricultural production in 2030 and 2095. Agric For Meteorol 117:97–122

    Article  Google Scholar 

  • Jarecki MK, Lal R (2003) Crop management for soil carbon sequestration. Crit Rev Plant Sci 22:471–502

    Article  Google Scholar 

  • Jarvis A, Upadhyaya HD., Gowda C, Agrawal P, Fujisaka S, Anderson B (2008) Climate change and its effect on conservation and use of plant genetic resources for food and agriculture and associated biodiversity for food security

    Google Scholar 

  • Kjøhl M, Nielsen A, Stenseth NC (2011) Potential effects of climate change on crop pollination. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2005) Climate change, soil carbon dynamics, and global food security. In: Lal R, Stewart B, Uphoff N (eds) Climate change and global food security. CRC Press, Boca Raton, pp 113–143

    Chapter  Google Scholar 

  • Lane A, Jarvis A (2007) Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation

    Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84

    Article  CAS  PubMed  Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  • Liu C, Allan RP (2013) Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ Res Lett 8:034002

    Article  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013) The critical role of extreme heat for maize production in the United States. Nat Clim Chang 3:497

    Article  Google Scholar 

  • Loladze I (2002) Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 17:457–461

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486

    Article  CAS  PubMed  Google Scholar 

  • Magadza CHD (2000) Climate change impacts and human settlements in Africa: prospects for adaptation. Environ Monit Assess 61:193–205

    Article  Google Scholar 

  • Maxted N, Kell S (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, pp 266–509

    Google Scholar 

  • Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Secur 1:7

    Article  Google Scholar 

  • McGuire S, Sperling L (2013) Making seed systems more resilient to stress. Glob Environ Chang 23:644–653

    Article  Google Scholar 

  • McKeown A, Warland J, McDonald M (2006) Long-term climate and weather patterns in relation to crop yield: a minireview. Can J Bot 84:1031–1036

    Article  Google Scholar 

  • Monneveux P, Pastenes C, Reynolds MP (2003) Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes. J Plant Physiol 160:657–666

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Sirault XR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    Article  CAS  PubMed  Google Scholar 

  • Mwongera C, Shikuku KM, Twyman J, Läderach P, Ampaire E, Van Asten P, Twomlow S, Winowiecki LA (2017) Climate smart agriculture rapid appraisal (CSA-RA): a tool for prioritizing context-specific climate smart agriculture technologies. Agric Syst 151:192–203

    Article  Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T (2014) Increasing CO 2 threatens human nutrition. Nature 510:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Chang 2:2

    Article  CAS  Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  PubMed  Google Scholar 

  • Rashid MA, Jabloun M, Andersen MN, Zhang X, Olesen JE (2019) Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agric Water Manag 222:193–203

    Article  Google Scholar 

  • Reddy V, Pachepsky YA (2000) Predicting crop yields under climate change conditions from monthly GCM weather projections. Environ Model Softw 15:79–86

    Article  Google Scholar 

  • Renault D, Facon T, Wahaj R (2007) Modernizing irrigation management: the MASSCOTE approach – mapping system and services for canal operation techniques. FAO, Rome

    Google Scholar 

  • Rezaei EE, Gaiser T, Siebert S, Ewert F (2015) Adaptation of crop production to climate change by crop substitution. Mitig Adapt Strateg Glob Chang 20:1155–1174

    Article  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey AD (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum 120:179–186

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeetha K, Thomas ASA, Seema B (2018) Comparison of organic and conventional farmers based on integrated climate change adaptive capacity. Indian Res J Ext Educ 18:1–6

    Google Scholar 

  • Schoeneberger M, Bentrup G, De Gooijer H, Soolanayakanahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conserv 67:128A–136A

    Article  Google Scholar 

  • Scialabba NE-H, Müller-Lindenlauf M (2010) Organic agriculture and climate change. Renew Agric Food Syst 25:158–169

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Clim 21:432–458

    Article  Google Scholar 

  • Shu Q (2009) Induced plant mutations in the genomics era. In: Proceedings of an international joint FAO/IAEA symposium, Vienna, Austria, 2008. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

    Google Scholar 

  • Singh US, Bari MA, Kumar A, Ismail A, Mackill DJ (2010) Status of stress tolerant rice in South Asia. In: Proceedings of the workshop on Public and Private Participation in the Development and Adoption of Stress Tolerant Rice Varieties in the coastal region of Bangladesh. Organised by the International Finance Corporation and South Asia Enterprise Development Facility, Dhaka, 19 August 2009

    Google Scholar 

  • Tai AP, Martin MV (2017) Impacts of ozone air pollution and temperature extremes on crop yields: spatial variability, adaptation and implications for future food security. Atmos Environ 169:11–21

    Article  CAS  Google Scholar 

  • Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Chang Biol 14:565–575

    Article  Google Scholar 

  • Westengen OT, Brysting AK (2014) Crop adaptation to climate change in the semi-arid zone in Tanzania: the role of genetic resources and seed systems. Agric Food Secur 3:3

    Article  Google Scholar 

  • Will RE, Wilson SM, Zou CB, Hennessey TC (2013) Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol 200:366–374

    Article  PubMed  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB, Hunt ER, Diaz-Soltero H (2011) Invasive species and climate change: an agronomic perspective. Clim Chang 105:13–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azeem Tariq or Muhammad Adil Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tariq, A., Rashid, M.A. (2020). Impact of Climate Change on Crop Production: Effects and Management. In: Jabran, K., Florentine, S., Chauhan, B. (eds) Crop Protection Under Changing Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-46111-9_7

Download citation

Publish with us

Policies and ethics