Skip to main content

Potential for an Impact of Global Climate Change on Insect Herbivory in Cereal Crops

  • Chapter
  • First Online:
Crop Protection Under Changing Climate

Abstract

Atmospheric carbon dioxide (CO2) concentrations have attained a higher level (>400 ppm) than at any time in recent geological history (>800 K years), and the global climate has been consistently warmer during the 2000s than at any time since records began over 150 years ago. These changes will affect the behavior and population dynamics of herbivorous arthropods and their natural enemies. Herbivore populations or their overwintering ranges may shift poleward, or to higher elevations, herbivores may increase the number of generations they complete (voltinism) during a crop cycle or alter migration routes in response to changing wind patterns. However, the expansion of distribution ranges, increasing voltinism, greater functional efficiency at high temperatures, and a high degree of plasticity among the arthropod natural enemies of crop pests will reduce the potential impacts of climate change on pest damage to crops. Agroecology and crop diversification can increase food-web complexity to provide stability of pest and natural enemy populations and resilience to crop production systems under a future warmer climate. This chapter highlights the need to acknowledge the ecological complexity of crop arthropod communities if we are to better develop future, climate-resilient production systems that avoid potential pest problems and maintain or increase agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott KC, Harmon JP, Fabina NS (2014) The challenge of predicting temperature effects on short-term predator–prey dynamics. Popul Ecol 56:375–392

    Google Scholar 

  • Ali M, Huang D, Nachman G, Ahmed N, Begum MA, Rabbi M (2014) Will climate change affect outbreak patterns of planthoppers in Bangladesh? PLoS One 9:e91678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MP, Kabir MMM, Afrin S, Nowrin F, Haque SS, Haque MM et al (2019) Increased temperature induces leaffolder outbreak in rice field. J Appl Entomol 143:867–874

    Google Scholar 

  • Babendreier D, Wan M, Tang R, Gu R, Tambo J, Liu Z et al (2019) Impact assessment of biological control-based integrated pest management in rice and maize in the Greater Mekong Subregion. Insects 10:e226

    PubMed  Google Scholar 

  • Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D et al (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Chang 2:182–185

    CAS  Google Scholar 

  • Bakhat HF, Bibi N, Zia Z, Abbas S, Hammad HM, Fahad S (2018) Silicon mitigates biotic stresses in crop plants: a review. Crop Prot 104:21–34

    CAS  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    CAS  PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Google Scholar 

  • Barton BT (2014) Reduced wind strengthens top-down control of an insect herbivore. Ecology 95:2375–2381

    Google Scholar 

  • Barton BT, Ives AR (2014) Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology 95:1479–1484

    PubMed  Google Scholar 

  • Battisti A, Larsson S (2015) Climate change and insect pest distribution range. In: Björkman C, Niemelä P (eds) Climate change and insect pests. CABI, Wallingford, pp 1–15

    Google Scholar 

  • Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, Nelson PN et al (2018) Farming with crops and rocks to address global climate, food and soil security. Nature Plants 4:138–147

    PubMed  Google Scholar 

  • Bensadia F, Boudreault S, Guay J-F, Michaud D, Cloutier C (2006) Aphid clonal resistance to a parasitoid fails under heat stress. J Insect Physiol 52:146–157

    CAS  PubMed  Google Scholar 

  • Bergvinson DJ, Arnason JT, Hamilton RI, Tachibana S, Towers GHN (1994) Putative role of photodimerized phenolic acids in maize resistance to Ostrinia nubilalis (Lepidoptera: Pyralidae). Environ Entomol 23:1516–1523

    CAS  Google Scholar 

  • Bergvinson DJ, Larsen JS, Arnason JT (2012) Effect of light on changes in maize resistance against the European corn borer, Ostrinia nubilalis (Hübner). Can Entomol 127:111–122

    Google Scholar 

  • Bosque-Pérez NA (1979) Major insects pests of maize in Africa: biology and control. International Institute of Tropical Agriculture, Ibadan

    Google Scholar 

  • Brabec M, Honěk A, Pekár S, Martinková Z (2014) Population dynamics of aphids on cereals: digging in the time-series data to reveal population regulation caused by temperature. PLoS One 9:e106228

    PubMed  PubMed Central  Google Scholar 

  • Braun S, Flückiger W (1984) Increased population of the aphid Aphis pomi at a motorway. Part 2 The effect of drought and deicing salt. Environ Pollut Ser A Ecol Biol 36:261–270

    CAS  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SF, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos 111:D12

    Google Scholar 

  • Buntin DG, Bruckner PL, Johnson JW (1990) Management of Hessian fly (Diptera: Cecidomyiidae) in Georgia by delayed planting of winter wheat. J Econ Entomol 83:1025–1033

    Google Scholar 

  • Byers DL (2017) Studying plant–pollinator interactions in a changing climate: a review of approaches. Appl Plant Sci 5:e1700012

    Google Scholar 

  • Cannon RJ (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Chang Biol 4:785–796

    Google Scholar 

  • Capstick S, Whitmarsh L, Poortinga W, Pidgeon N, Upham P (2015) International trends in public perceptions of climate change over the past quarter century. Wiley Interdiscip Rev Clim Chang 6:35–61

    Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:e287

    Google Scholar 

  • Chen FJ, Wu G, Parajulee MN, Ge F (2007) Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Sci Tech 17:313–324

    Google Scholar 

  • Chen C-Y, Lai C-Y, Kuo M-H (2009) Temperature effect on the growth of Buchnera endosymbiont in Aphis craccivora (Hemiptera: Aphididae). Symbiosis 49:53

    Google Scholar 

  • Chen X, Liu W, Zhu J, Zhang X, Zhai B (2013) Climatic factors influencing the 2003 outbreak of Cnaphalocrocis medinalis in China. Chin J Appl Entomol 50:615–621

    Google Scholar 

  • Chen Y, Li R, Li B, Meng L (2019) Biochar applications decrease reproductive potential of the English grain aphid Sitobion avenae and upregulate defense-related gene expression. Pest Manag Sci 75:1310–1316

    CAS  PubMed  Google Scholar 

  • Chiverton PA (1988) Searching behaviour and cereal aphid consumption by Bembidion lampros and Pterostichus cupreus, in relation to temperature and prey density. Entomol Exp Appl 47:173–182

    Google Scholar 

  • Clercq D (2001) Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hübner) (Lep., Noctuidae): effect of temperature. J Appl Entomol 125:131–134

    Google Scholar 

  • Cohen JE, Schoenly K, Heong KL, Justo H, Arida G, Barrion AT et al (1994) A food web approach to evaluating the effect of insecticide spraying on insect pest population dynamics in a Philippine irrigated rice ecosystem. J Appl Ecol 31:747–763

    Google Scholar 

  • Coyle DR, Nagendra UJ, Taylor MK, Campbell JH, Cunard CE, Joslin (2017) Soil fauna responses to natural disturbances, invasive species, and global climate change: current state of the science and a call to action. Soil Biol Biochem 110: 116-133

    Google Scholar 

  • Cuong N, Ben P, Phuong L, Chau L, Cohen M (1997) Effect of host plant resistance and insecticide on brown planthopper Nilaparvata lugens (Stål) and predator population development in the Mekong Delta, Vietnam. Crop Prot 16:707–715

    Google Scholar 

  • Dainese M, Martin EA, Aizen M, Albrecht M, Bartomeus I, Bommarco R et al (2019) A global synthesis reveals biodiversity-mediated benefits for crop production. BioRxiv:e554170

    Google Scholar 

  • Damien M, Tougeron K (2019) Prey–predator phenological mismatch under climate change. Curr Opin Insect Sci 35:60–68

    PubMed  Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Physiol 160:1677–1685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominik C, Seppelt R, Horgan FG, Marquez L, Settele J, Václavík T (2017) Regional-scale effects override the influence of fine-scale landscape heterogeneity on rice arthropod communities. Agric Ecosyst Environ 246:269–278

    Google Scholar 

  • Dominik C, Seppelt R, Horgan FG, Settele J, Václavík T (2018) Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. J Appl Ecol 55:2461–2472

    Google Scholar 

  • Dong Z, Hou R, Ouyang Z, Zhang R (2013) Tritrophic interaction influenced by warming and tillage: a field study on winter wheat, aphids and parasitoids. Agric Ecosyst Environ 181:144–148

    Google Scholar 

  • Dyck V, Thomas B (1979) The brown planthopper problem. In: International Rice Research Institute (ed) Brown planthopper: threat to rice production in Asia. International Rice Research Institute, Los Baños, pp 3–17

    Google Scholar 

  • Eizaguirre M, López C, Asín L, Albajes R (1994) Thermoperiodism, photoperiodism and sensitive stage in the diapause induction of Sesamia nonagrioides (Lepidoptera: Noctuidae). J Insect Physiol 40:113–119

    Google Scholar 

  • Eizaguirre M, López C, Sans A (2007) Maize phenology influences field diapause induction of Sesamia nonagrioides (Lepidoptera: Noctuidae). Bull Entomol Res 92:439–443

    Google Scholar 

  • EPA (2019) Climate change indicators. Environmental Protection Agency of the United States of America. URL: https://www.epa.gov/climate-indicators/climate-change-indicators-us-and-global-precipitation. Accessed Oct 2019

  • Fang Y, Liao H, Qian Q, Liu X (2013) Combined effects of temperature and relative humidity on eggs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Acta Entomol Sin 56:786–791

    Google Scholar 

  • Fantinou AA, Kourti AT, Saitanis CJ (2003) Photoperiodic and temperature effects on the intensity of larval diapause in Sesamia nonagrioides. Physiol Entomol 28:82–87

    Google Scholar 

  • FAO (2019) FAOSTAT crops. Food and Agriculture Organization of the United Nations. URL: http://www.fao.org/faostat/en/#data/QC. Accessed Oct 2019

  • Farmer AM (1993) The effects of dust on vegetation—a review. Environ Pollut 79:63–75

    CAS  PubMed  Google Scholar 

  • Farrell J (2016) Corporate funding and ideological polarization about climate change. PNAS 113:92–97

    CAS  PubMed  Google Scholar 

  • Ferrater JB, Naredo AI, Almazan MLP, de Jong PW, Dicke M, Horgan FG (2015) Varied responses by yeast-like symbionts during virulence adaptation in a monophagous phloem-feeding insect. Arthropod Plant Interact 9:215–224

    Google Scholar 

  • Folcher L, Bourguet D, Thiéry D, Pélozuelo L, Phalip M, Weissenberger et al (2011) Changes in parasitoid communities over time and space: a historical case study of the maize pest Ostrinia nubilalis. PLoS One 6:e25374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest JR (2016) Complex responses of insect phenology to climate change. Curr Opin Insect Sci 17:49–54

    PubMed  Google Scholar 

  • Foster SP, Harrington R, Devonshire AL, Denholm I, Devine GJ, Kenward MG et al (2009) Comparative survival of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in low temperature field trials. Bull Entomol Res 86:17–27

    Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R et al (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Chang Biol 12:1545–1553

    Google Scholar 

  • Gibbard S, Caldeira K, Bala G, Phillips TJ, Wickett M (2005) Climate effects of global land cover change. Geophys Res Lett 32:L23705

    Google Scholar 

  • Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philosophical transactions of the Royal Society of London. Ser A Math Phys Eng Sci 361:1935–1944

    Google Scholar 

  • Gillyboeuf N, Anglade P, Lavenseau L, Peypelut L (1994) Cold hardiness and overwintering strategy of the pink maize stalk borer, Sesamia nonagrioides Lef (Lepidoptera, Noctuidae). Oecologia 99:366–373

    CAS  PubMed  Google Scholar 

  • Godfray HCJ, Chan MS (1990) How insecticides trigger single-stage outbreaks in tropical pests. Funct Ecol 4:329–337

    Google Scholar 

  • Gorodkov K (1986) A three-dimensional climatic model of potential distribution area and some of its properties. Entomologicheskoe Obozrenie 65:81–95

    Google Scholar 

  • Gözel U, Güneş Ç (2013) Effect of entomopathogenic nematode species on the corn stalk borer (Sesamia cretica Led. Lepidoptera: Noctuidae) at different temperatures. Turkish J Entomol 37:65–72

    Google Scholar 

  • Guay J-F, Boudreault S, Michaud D, Cloutier C (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol 55:919–926

    CAS  PubMed  Google Scholar 

  • Guedes RNC, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70:690–697

    CAS  PubMed  Google Scholar 

  • Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G et al (2016) Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat Plants 2:e16014

    Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2006) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Google Scholar 

  • Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496

    PubMed  Google Scholar 

  • Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, Barbosa P (1995) Arthropod pest resurgence: an overview of potential mechanisms. Crop Prot 14:3–18

    Google Scholar 

  • Harris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE et al (2018) Biological responses to the press and pulse of climate trends and extreme events. Nat Clim Chang 8:579–587

    Google Scholar 

  • Hatchett JH, Starks KJ, Webster JA (1987) Insect and mite pests of wheat. In: Heyne EG (ed) Wheat and wheat improvement. Agronomy monographs, Wiley, Hoboken, pp 625–675

    Google Scholar 

  • He L, Asseng S, Zhao G, Wu D, Yang X, Zhuang W et al (2015) Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol 200:135–143

    Google Scholar 

  • Heeb L, Jenner E, Cock MJW (2019) Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. J Pest Sci 92:951–969

    Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    PubMed  Google Scholar 

  • Heinrichs EA (1994) Biology and management of rice insects. International Rice Research Institute, Los Baños

    Google Scholar 

  • Herzog T (2009) World greenhouse gas emissions in 2005. World Resources Institute – working paper, Washington DC

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Google Scholar 

  • Hoeppe P (2016) Trends in weather related disasters – consequences for insurers and society. Weather Clim Extremes 11:70–79

    Google Scholar 

  • Hong J, Lee G-S, Park J-J, Mo H-H, Cho K (2019) Risk map for the range expansion of Thrips palmi in Korea under climate change: combining species distribution models with land-use change. J Asia Pac Entomol 22:666–674

    Google Scholar 

  • Hongyi L, Nan L, Xiaoping X, Baoxin D, Sa Z (2010) Analyzing the influence of meteorology on occurrence and development of wheat aphids in Shandong province. Chin Agric Sci Bull 26:221–225

    Google Scholar 

  • Hooks CRR, Johnson MW (2004) Using undersown clovers as living mulches: effects on yields, lepidopterous pest infestations, and spider densities in a Hawaiian broccoli agroecosystem. Int J Pest Manag 50:115–120

    Google Scholar 

  • Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Chang Biol 10:1197–1208

    Google Scholar 

  • Horgan FG (2005) Two types of refuge have opposite effects on the size of larval aggregations in a tropical defoliator. Eur J Entomol 102:225–230

    Google Scholar 

  • Horgan FG (2012) Diversity and defence: plant–herbivore interactions at multiple scales and trophic levels. In: Gurr GM, Wratten SD, Snyder WE, Read DMY (eds) Biodiversity and insect pests: key issues for sustainable management. Wiley, Hoboken, pp 241–258

    Google Scholar 

  • Horgan FG (2017a) Integrated pest management for sustainable rice cultivation: a holistic approach. In: Sasaki T (ed) Achieving sustainable cultivation of rice—cultivation, pest and disease management. Burleigh Dodds Science, Cambridge, UK, pp 309–342

    Google Scholar 

  • Horgan FG (2017b) Insect herbivores of rice: their natural regulation and ecologically based management. In: Chauhan BS, Jabran K, Mahajan G (eds) Rice production worldwide. Springer, Cham, pp 279–302

    Google Scholar 

  • Horgan FG, Ferrater JB (2017) Benefits and potential trade-offs associated with yeast-like symbionts during virulence adaptation in a phloem-feeding planthopper. Entomol Exp Appl 163:112–125

    Google Scholar 

  • Horgan FG, Myers JH (2004) Interactions between predatory ground beetles, the winter moth and an introduced parasitoid on the lower mainland of British Columbia. Pedobiologia 48:23–35

    Google Scholar 

  • Horgan FG, Myers JH, Van Meel R (1999) Cyzenis albicans (Diptera: Tachinidae) does not prevent the outbreak of winter moth (Lepidoptera: Geometridae) in birch stands and blueberry plots on the lower mainland of British Columbia. Environ Entomol 28:96–107

    Google Scholar 

  • Horgan FG, Crisol-Martínez E, Almazan MLP, Romena A, Ramal AF, Ferrater JB et al (2016) Susceptibility and tolerance in hybrid and pure-line rice varieties to herbivore attack: biomass partitioning and resource-based compensation in response to damage. Ann Appl Biol 169:200–213

    CAS  Google Scholar 

  • Horgan FG, Ramal AF, Bentur JS, Kumar R, Bhanu KV, Sarao PS et al (2017a) Geographic and research centre origins of rice resistance to Asian planthoppers and leafhoppers: implications for rice breeding and gene deployment. Agronomy 7:e62

    Google Scholar 

  • Horgan FG, Ramal AF, Villegas JM, Almazan MLP, Bernal CC, Jamoralin A et al (2017b) Ecological engineering with high diversity vegetation patches enhances bird activity and ecosystem services in Philippine rice fields. Reg Environ Chang 17:1355–1367

    Google Scholar 

  • Horgan FG, Ramal AF, Villegas JM, Jamoralin A, Bernal CC, Perez MO et al (2017c) Effects of bund crops and insecticide treatments on arthropod diversity and herbivore regulation in tropical rice fields. J Appl Entomol 141:587–599

    CAS  Google Scholar 

  • Horgan FG, Bernal CC, Letana S, Naredo AI, Ramp D, Almazan MLP (2018a) Reduced efficiency of tropical flies (Diptera) in the decomposition of snail cadavers following molluscicide poisoning. Appl Soil Ecol 129:61–71

    Google Scholar 

  • Horgan FG, Kudavidanage EP, Weragodaarachchi A, Ramp D (2018b) Traditional ‘maavee’ rice production in Sri Lanka: environmental, economic and social pressures revealed through stakeholder interviews. Paddy Water Environ 16:225–241

    Google Scholar 

  • Horgan FG, Peñalver Cruz A, Bernal CC, Ramal AF, Almazan MLP, Wilby A (2018c) Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications. Field Crop Res 217:53–65

    Google Scholar 

  • Horgan FG, Crisol Martínez E, Stuart AM, Bernal CC, de Cima ME, Almazan MLP et al (2019a) Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 10:e328

    PubMed  Google Scholar 

  • Horgan FG, Srinivasan TS, Crisol-Martínez E, Almazan MLP, Ramal AF, Oliva R et al (2019b) Microbiome responses during virulence adaptation by a phloem-feeding insect to resistant near-isogenic rice lines. Ecol Evol 9:11911–11929

    PubMed  PubMed Central  Google Scholar 

  • Hu G, Cheng XN, Qi GJ, Wang FY, Lu F, Zhang XX et al (2010a) Rice planting systems, global warming and outbreaks of Nilaparvata lugens (Stål). Bull Entomol Res 101:187–199

    PubMed  Google Scholar 

  • Hu G, Xie M-C, Lin Z-X, Xin D-Y, Huang C-Y, Chen W et al (2010b) Are outbreaks of Nilaparvata lugens (Stål) associated with global warming? Environ Entomol 39:1705–1714

    PubMed  Google Scholar 

  • Hu J-H, Wu J-C, Yin J-L, Gu H-N (2010c) Physiology of insecticide-induced stimulation of reproduction in the rice brown planthopper (Nilaparvata lugens (Stål)): dynamics of protein in fat body and ovary. Int J Pest Manag 56:23–30

    CAS  Google Scholar 

  • Hu G, Cheng X, Qi G, Wang F, Lu F, Zhang X et al (2011) Rice planting systems, global warming and outbreaks of Nilaparvata lugens (Stål). Bull Entomol Res 101:187–199

    CAS  PubMed  Google Scholar 

  • Hu G, Lu F, Zhai B-P, Lu M-H, Liu W-C, Zhu F et al (2014) Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction? PLoS One 9:e88973

    PubMed  PubMed Central  Google Scholar 

  • Hu C, Hou M, Wei G, Shi B, Huang J (2015) Potential overwintering boundary and voltinism changes in the brown planthopper, Nilaparvata lugens, in China in response to global warming. Clim Chang 132:337–352

    Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2015) Accelerated dryland expansion under climate change. Nat Clim Chang 6:e166

    Google Scholar 

  • Hullé M, d’Acier AC, Bankhead-Dronnet S, Harrington R (2010) Aphids in the face of global changes. C R Biol 333:497–503

    PubMed  Google Scholar 

  • Huttunen L, Niemelä P, Peltola H, Heiska S, Rousi M, Kellomäki S (2007) Is a defoliated silver birch seedling able to overcompensate the growth under changing climate? Environ Exp Bot 60:227–238

    Google Scholar 

  • Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF et al (2009) Review: ecological networks – beyond food webs. J Anim Ecol 78:253–269

    PubMed  Google Scholar 

  • Inoue H, Hirao J (1980) Effects of temperature on the transmission of Rice Waika Virus by Nephotettix cincticeps Uhler (Hemiptera: Cicadellidae). Appl Entomol Zool 15:433–438

    Google Scholar 

  • Isichaikul S, Ichikawa T (1993) Relative humidity as an environmental factor determining the microhabitat of the nymphs of the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Res Popul Ecol 35:361–373

    Google Scholar 

  • Jacobson L, Farstad C (1952) Effect of time of seeding Apex wheat on infestation and sex ratio of the wheat stem sawfly, Cephus cinctus Nort.(Hymenoptera: Cephidae). Can Entomol 84:90–92

    Google Scholar 

  • Jamshidnia A, Kharazi-Pakdel A, Allahyari H, Soleymannejadian E (2010) Functional response of Telenomus busseolae (Hym.: Scelionidae) an egg parasitoid of the sugarcane stem borer, Sesamia nonagrioides (Lep.: Noctuidae) at different temperatures. Biocontrol Sci Tech 20:631–640

    Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Google Scholar 

  • Jeffs CT, Lewis OT (2013) Effects of climate warming on host–parasitoid interactions. Ecol Entomol 38:209–218

    Google Scholar 

  • JISAO (2019) Sahel precipitation index (20-10N, 20W-10E), 1901-2017. Joint Institute for the Study of the Atmosphere and Ocean. URL: http://research.jisao.washington.edu/data/sahel/. Accessed Oct 2019

  • Jones MG (1978) Development of wheat bulb fly (Della coarctata Fall.) larvae and pupae at different temperatures. Entomol Exp Appl 23:288–300

    Google Scholar 

  • Kaushik C (2011) Incidence of leaf folder [Cnaphalocrocis mendinalis (Guenee)] in relation to climatic conditions in the hilly tract of Jalpaiguri, West Bengal. Curr Adv Agric Sci 3:67–68

    Google Scholar 

  • Kfir R (1997) Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann Entomol Soc Am 90:619–624

    Google Scholar 

  • Khadioli N, Tonnang ZEH, Muchugu E, Ong’amo G, Achia T, Kipchirchir et al (2014) Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters. Bull Entomol Res 104:809–822

    CAS  PubMed  Google Scholar 

  • Kim H, Lieffering M, Miura S, Kobayashi K, Okada M (2001) Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytol 150:223–229

    CAS  Google Scholar 

  • Kiritani K (1999) Shift of IPM strategy for rice under global warming in temperate areas. In: Journal Department of Zhongshan University (ed) Integrated pest management in rice-based ecosystem. Zhongshan University, China, pp 235-244

    Google Scholar 

  • Kisimoto R, Sogawa K (1995) Planthopper Sogatella furcifera in East Asia: the role of weather and climate. In: Drake VA, Gatehouse AG (eds) Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge, UK, pp 67–92

    Google Scholar 

  • Klapwijk MJ, Gröbler BC, Ward K, Wheeler D, Lewis OT (2010) Influence of experimental warming and shading on host–parasitoid synchrony. Glob Chang Biol 16:102–112

    Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA et al (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224

    Google Scholar 

  • Kocmánková E, Trnka M, Eitzinger J, Formayer H, Dubrovský M, Semerádová D et al (2010) Estimating the impact of climate change on the occurrence of selected pests in the Central European region. Clim Res 44:95–105

    Google Scholar 

  • Krishnan S, Chander S (2015) Simulation of climatic change impact on crop-pest interactions: a case study of rice pink stem borer Sesamia inferens (Walker). Clim Chang 131:259–272

    Google Scholar 

  • Krysan JL, Jackson JJ, Lew AC (1984) Field termination of egg diapause in Diabrotica with new evidence of extended diapause in D. barberi (Coleoptera: Chrysomelidae). Environ Entomol 13:1237–1240

    Google Scholar 

  • Kuntashula E, Chabala LM, Mulenga BP (2014) Impact of minimum tillage and crop rotation as climate change adaptation strategies on farmer welfare in smallholder farming systems of Zambia. J Sustain Dev 7:95–110

    Google Scholar 

  • Kvedaras OL, An M, Choi Y-S, Gurr G (2010) Silicon enhances natural enemy attraction and biological control through induced plant defences. Bull Entomol Res 100:367–371

    CAS  PubMed  Google Scholar 

  • Lacoste C, Nansen C, Thompson S, Moir-Barnetson L, Mian A, McNee M et al (2015) Increased susceptibility to aphids of flowering wheat plants exposed to low temperatures. Environ Entomol 44:610–618

    CAS  PubMed  Google Scholar 

  • Larsson S (1989) Stressful times for the plant stress: insect performance hypothesis. Oikos 56:277–283

    Google Scholar 

  • Levine E, Oloumi-Sadeghi H, Ellis CR (1992a) Thermal requirements, hatching patterns, and prolonged diapause in western corn rootworm (Coleoptera: Chrysomelidae) eggs. J Econ Entomol 85:2425–2432

    Google Scholar 

  • Levine E, Oloumi-Sadeghi H, Fisher JR (1992b) Discovery of multiyear diapause in Illinois and South Dakota northern corn rootworm (Coleoptera: Chrysomelidae) eggs and incidence of the prolonged diapause trait in Illinois. J Econ Entomol 85:262–267

    Google Scholar 

  • Li B, Guo Q, Meng L (2013) Effects of elevated CO2 concentration on development, reproduction and food utilization of the Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Sci Agric Sin 46:4464–4470

    Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    CAS  PubMed  Google Scholar 

  • Loo YY, Billa L, Singh A (2015) Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci Front 6:817–823

    Google Scholar 

  • LoPresti EF, Karban R (2016) Chewing sandpaper: grit, plant apparency and plant defense in sand-entrapping plants. Ecology 97:826–833

    PubMed  Google Scholar 

  • Lu X-F, Huo Z-G, Shen S-h, Huang D-P, Wang L, Xiao J-J et al (2012) Effects of climate warming on the northern distribution boundary of brown planthopper (Nilaparvata lugens (Stål)) overwintering in China. Chin J Ecol 31:1977–1983

    Google Scholar 

  • Lu K, Chen X, Liu W, Zhou Q (2016) Identification of a heat shock protein 90 gene involved in resistance to temperature stress in two wing-morphs of Nilaparvata lugens (Stål). Comp Biochem Physiol A Mol Integr Physiol 197:1–8

    CAS  PubMed  Google Scholar 

  • Lucas PW, van Casteren A, Al-Fadhalah K, Almusallam AS, Henry AG, Michael S et al (2014) The role of dust, grit and phytoliths in tooth wear. Ann Zool Fenn 51:143–152

    Google Scholar 

  • Luo J, Liu Y, Gong Y, Cheng X, Fu Q, Hu G (2013) Investigation of the overwintering of three species of rice pest, Nilaparvata lugens, Sogatella furcifera and Cnaphalocrocis medinalis in China. Chin J Appl Entomol 50:253–260

    Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U et al (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    PubMed  Google Scholar 

  • Ma G, Ma C-S (2012) Climate warming may increase aphids’ dropping probabilities in response to high temperatures. J Insect Physiol 58:1456–1462

    CAS  PubMed  Google Scholar 

  • Ma M-Y, Peng Z-P, He Y (2012) Effects of temperature on functional response of Anagrus nilaparvatae Pang et Wang (Hymenoptera: Mymaridae) on the eggs of whitebacked planthopper, Sogatella furcifera Horváth and brown planthopper, Nilaparvata lugens Stål. J Integr Agric 11:1313–1320

    Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Trans Am Geophys Union 87:233–241

    Google Scholar 

  • Manns HR, Maxwell CD, Emery RJN (2007) The effect of ground cover or initial organic carbon on soil fungi, aggregation, moisture and organic carbon in one season with oat (Avena sativa) plots. Soil Tillage Res 96:83–94

    Google Scholar 

  • Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Conserv 187:103–111

    Google Scholar 

  • Matsumura M, Takeuchi H, Satoh M, Sanada-Morimura S, Otuka A, Watanabe T et al (2008) Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-East Asia. Pest Manag Sci 64:1115–1121

    CAS  PubMed  Google Scholar 

  • Meisner MH, Harmon JP, Ives AR (2014) Temperature effects on long-term population dynamics in a parasitoid–host system. Ecol Monogr 84:457–476

    Google Scholar 

  • Menéndez R, González-Megías A, Jay-Robert P, Marquéz-Ferrando R (2014) Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Glob Ecol Biogeogr 23:646–657

    Google Scholar 

  • Mia A-M, Iwahashi O (1999) Seasonal changes in infestation level of sugarcane by the pink borer, Sesamia inferens (Lepidoptera: Noctuidae), in relation to a parasitoid, Cotesia flavipes (Hymenoptera: Braconidae), on Okinawa Island. Appl Entomol Zool 34:429–434

    Google Scholar 

  • Mochida OM, Joshi RC, Litsinger JA (1987) Climatic factors affecting the occurrence of insect pests. Weather and rice: proceedings of the international workshop on the impact of weather parameters on growth and yield of rice. International Rice Research Institute, Los Baños, pp 149–164

    Google Scholar 

  • Moreau G (2006) Past and present outbreaks of the balsam fir sawfly in western Newfoundland: an analytical review. For Ecol Manag 221:215–219

    Google Scholar 

  • Morishita M (1992) A possible relationship between outbreaks of planthoppers, Nilaparvata lugens Stål and Sogatella furcifera Horváth (Hemiptera: Delphacidae) in Japan and the El Niño phenomenon. Appl Entomol Zool 27:297–299

    Google Scholar 

  • Musser FR, Shelton AM (2005) The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag Sci 61:508–510

    CAS  PubMed  Google Scholar 

  • Mutamiswa R, Chidawanyika F, Nyamukondiwa C (2018) Thermal plasticity potentially mediates the interaction between host Chilo partellus Swinhoe (Lepidoptera: Crambidae) and endoparasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae) in rapidly changing environments. Pest Manag Sci 74:1335–1345

    CAS  PubMed  Google Scholar 

  • Myers JH (2000) Population fluctuations of the western tent caterpillar in southwestern British Columbia. Popul Ecol 42:231–241

    Google Scholar 

  • NASA (2019) Global vital signs: vital signs of the planet. North Americean Space Agency. URL: https://climate.nasa.gov/. Accessed Oct 2019

  • Nascimento AM, Assis FA, Moraes JC, Souza BHS (2018) Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (J. E. Smith). J Appl Entomol 142:241–249

    CAS  Google Scholar 

  • Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T et al (2009) Climate change: impact on agriculture and costs of adaptation. International Food Policy Research Institute, Washington DC

    Google Scholar 

  • Newman JA (2004) Climate change and cereal aphids: the relative effects of increasing CO2 and temperature on aphid population dynamics. Glob Chang Biol 10:5–15

    Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520

    CAS  PubMed  Google Scholar 

  • Norris JR, Allen RJ, Evan AT, Zelinka MD, O’Dell CW, Klein SA (2016) Evidence for climate change in the satellite cloud record. Nature 536:72–75

    CAS  PubMed  Google Scholar 

  • Ntiri ES, Calatayud P-A, Van Den Berg J, Schulthess F, Le Ru BP (2016) Influence of temperature on intra- and interspecific resource utilization within a community of lepidopteran maize stemborers. PLoS One 11:e0148735

    PubMed  PubMed Central  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P et al (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112

    Google Scholar 

  • Ortega A (1987) Insect pests of maize: a guide for field identification. Centro Internacional de Mejoramiento de Maiz y Trigo, Mexico

    Google Scholar 

  • Otuka A, Matsumura M, Watanabe T, Van Dinh T (2008) A migration analysis for rice planthoppers, Sogatella furcifera (Horváth) and Nilaparvata lugens (Stål) (Homoptera: Delphacidae), emigrating from northern Vietnam from April to May. Appl Entomol Zool 43:527–534

    Google Scholar 

  • Otuka A, Huang S-H, Sanada-Morimura S, Matsumura M (2012) Migration analysis of Nilaparvata lugens (Hemiptera: Delphacidae) from the Philippines to Taiwan under typhoon-induced windy conditions. Appl Entomol Zool 47:263–271

    Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    CAS  Google Scholar 

  • Ôya S (1979) Survival tests on submerged green rice leafhopper: Nephotettix cincticeps Uhler, in relation to winter mortality under snow cover in the Hokuriku District. Appl Entomol Zool 14:319–325

    Google Scholar 

  • Pachauri RK, Myles RA, Barros VR, Broome J, Cramer W, Christ R et al (2014) Climate change 2014: synthesis report, Fifth assessment report of the Intergovernmental Panel on Climate Change 151. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Pandi GGP, Chander S, Singh MP, Pathak H (2018) Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc Nat Acad Sci India Sect B Biol Sci 88:57–64

    Google Scholar 

  • Parker DR, Page AL (1994) Vegetation management strategies for remediation of selenium contaminated soils. Marcel Dekker, New York

    Google Scholar 

  • Patel H, Kadu R, Landge S (2011) Study on seasonal incidence of rice leaf folders (Cnaphalocrocis medinalis Guen. and Pelopidas mathias Fb.) of paddy and its correlation with weather parameters. Int J Plant Prot 4:175–180

    Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    PubMed  Google Scholar 

  • Pelletier Y, Horgan FG, Pompon J (2013) Potato resistance against insect herbivores: resources and opportunities. In: Alyokhin A, Vincent C, Giordanengo P (eds) Insect pests of potato: global perspectives on biology and management. Academic Press, Cambridge, pp 439–462

    Google Scholar 

  • Pérez-Rodríguez J, Shortall CR, Bell JR (2015) Large-scale migration synchrony between parasitoids and their host. Ecol Entomol 40:654–659

    Google Scholar 

  • Piyaphongkul J, Pritchard J, Bale J (2014) Effects of acclimation on the thermal tolerance of the brown planthopper Nilaparvata lugens (Stål). Agric For Entomol 16:174–183

    Google Scholar 

  • Prasannakumar NR, Chander S, Pal M (2012) Assessment of impact of climate change with reference to elevated CO2 on rice brown planthopper, Nilaparvata lugens (Stal.) and crop yield. Curr Sci 103:1201–1205

    CAS  Google Scholar 

  • Preetha G, Stanley J, Suresh S, Samiyappan R (2010) Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stål.). Chemosphere 80:498–503

    CAS  PubMed  Google Scholar 

  • Punzo F (1993) Detoxification enzymes and the effects of temperature on the toxicity of pyrethroids to the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Compar Biochem Physiol Part C: Compar Pharmacol 105:155–158

    Google Scholar 

  • Qian L, Liu X, Huang Z, Wang L, Zhang Y, Gao Y et al (2019) Elevated CO2 enhances the host resistance against the western flower thrips, Frankliniella occidentalis, through increased callose deposition. J Pest Sci (online)

    Google Scholar 

  • Qiu J, Tang H, Frolking S, Boles S, Li C, Xiao X et al (2003) Mapping single-, double-, and triple-crop agriculture in China at 0.5° × 0.5° by combining county-scale census data with a remote sensing-derived land cover map. Geocarto Int 18:3–13

    Google Scholar 

  • Raga IN, Ito K, Matsui M, Okada M (1988) Effects of temperature on adult longevity, fertility, and rate of transovarial passage of Rice Stripe Virus in the small brown planthopper, Laodelphax striatellus Fallen (Homoptera: Delphacidae). Appl Entomol Zool 23:67–75

    Google Scholar 

  • Ramirez-Cabral NYZ, Kumar L, Shabani F (2017) Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. J Agric Sci 155:1219–1238

    Google Scholar 

  • Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS One 14:e0217148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102

    Google Scholar 

  • Riley J, Reynolds D, Smith A, Rosenberg L, Xia-nian C, Xiao-xi Z et al (1994) Observations on the autumn migration of Nilaparvata lugens (Homoptera: Delphacidae) and other pests in east central China. Bull Entomol Res 84:389–402

    Google Scholar 

  • Riley J, Reynolds D, Smith A, Edwards A, Zhang X-X, Cheng X-N et al (1995) Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastern China. Bull Entomol Res 85:397–414

    Google Scholar 

  • Roberts DWA, Tyrrell C (1961) Sawfly resistance in wheat: IV. Some effects of light intensity on resistance. Can J Plant Sci 41: 457-465

    Google Scholar 

  • Roitberg BD, Myers JH (2012) Behavioural and physiological adaptations of pea aphids (Homoptera: Aphididae) to high ground temperatures and predator disturbance. Can Entomol 111:515–519

    Google Scholar 

  • Rosenberg L, Magor J (1987) Predicting windborne displacements of the brown planthopper, Nilaparvata lugens from synoptic weather data. 1. Long-distance displacements in the north-east monsoon. J Anim Ecol 56:39–51

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Change Human Health 2:90–104

    Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    CAS  PubMed  Google Scholar 

  • Runjie Z, Heong KL, Domingo IT (1996) Relationship between temperature and functional response in Cardiochiles philippinensis (Hymenoptera: Braconidae), a larval parasitoid of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Environ Entomol 25:1321–1324

    Google Scholar 

  • Russell JA, Moran NA (2005) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B Biol Sci 273:603–610

    Google Scholar 

  • Sakamoto T, Van Nguyen N, Ohno H, Ishitsuka N, Yokozawa M (2006) Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens Environ 100:1–16

    Google Scholar 

  • Salminen SO, Richmond DS, Grewal SK, Grewal PS (2005) Influence of temperature on alkaloid levels and fall armyworm performance in endophytic tall fescue and perennial ryegrass. Entomol Exp Appl 115:417–426

    CAS  Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KA (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Google Scholar 

  • Schmidt MH, Thewes U, Thies C, Tscharntke T (2004) Aphid suppression by natural enemies in mulched cereals. Entomol Exp Appl 113:87–93

    Google Scholar 

  • Schoenly KG, Cohen JE, Heong KL, Arida GS, Barrion AT, Litsinger JA (1996) Quantifying the impact of insecticides on food web structure of rice-arthropod populations in a Philippine farmer’s irrigated field: a case study. In: Polis GA, Winemiller KO (eds) Food webs. Springer, Boston, pp 343–351

    Google Scholar 

  • Schuldiner-Harpaz T, Coll M (2013) Effects of global warming on predatory bugs supported by data across geographic and seasonal climatic gradients. PLoS One 8:e66622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweissing F, Wilde G (1979) Temperature and plant nutrient effects on resistance of seedling sorghum to the greenhug. J Econ Entomol 72:20–23

    Google Scholar 

  • Sedlock JL, Stuart AM, Horgan FG, Hadi B, Como Jacobson A, Alviola PA et al (2019) Local-scale bat guild activity differs with rice growth stage at ground level in the Philippines. Diversity 11:e148

    Google Scholar 

  • Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D et al (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988

    Google Scholar 

  • Shakoor A (2014) Silicon biomineralisation in plants: a tool to adapt to global climate change. J Res Biol Sci 1:1–3

    Google Scholar 

  • Shi B-K, Huang J-L, Hu C-X, Hou M-L (2014) Interactive effects of elevated CO2 and temperature on rice planthopper, Nilaparvata lugens. J Integr Agric 13:1520–1529

    CAS  Google Scholar 

  • Singh A (2017) Farmers’ perception and adoption of abiotic stress tolerant rice varieties in rain-fed lowlands of North Eastern Uttar Pradesh. Ind J Ext Edu 53:32–36

    Google Scholar 

  • Singh J, Singh JP (1995) Land degradation and economic sustainability. Ecol Econ 15:77–86

    Google Scholar 

  • Song Y, Heong K (1997) Changes in searching responses with temperature of Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) on the eggs of the brown planthopper, Nilaparvata lugens (Stål.) (Homoptera: Delphacidae). Popul Ecol 39:201–206

    Google Scholar 

  • Sparks TC, Shour MH, Wellemeyer EG (1982) Temperature-toxicity relationships of pyrethroids on three lepidopterans. J Econ Entomol 75:643–646

    CAS  Google Scholar 

  • Srinivasan TS, Almazan MLP, Bernal CC, Ramal AF, Subbarayalu MK, Horgan FG (2016) Interactions between nymphs of Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) on resistant and susceptible rice varieties. Appl Entomol Zool 51:81–90

    CAS  Google Scholar 

  • Stacey DA, Fellowes MDE (2007) Influence of temperature on pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) resistance to natural enemy attack. Bull Entomol Res 92:351–357

    Google Scholar 

  • Stamp NE, Osier TL (1998) Response of five insect herbivores to multiple allelochemicals under fluctuating temperatures. Entomol Exp Appl 88:81–96

    CAS  Google Scholar 

  • Stireman JO, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ et al (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. PNAS 102:e17384

    Google Scholar 

  • Sujithra M, Chander S (2013) Simulation of rice brown planthopper, Nilaparvata lugens (Stål.) population and crop-pest interactions to assess climate change impact. Clim Chang 121:331–347

    Google Scholar 

  • Susanti E, Ramadhani F, June T, Amien L (2010) Utilization of climate information for development of early warning system for brown plant hopper attack on rice. Indonesian J Agric 3:17–25

    Google Scholar 

  • Svobodová E, Trnka M, Dubrovský M, Semerádová D, Eitzinger J, Štěpánek P et al (2014) Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Manag Sci 70:708–715

    PubMed  Google Scholar 

  • Takagi H, Esteban M (2016) Statistics of tropical cyclone landfalls in the Philippines: unusual characteristics of 2013 Typhoon Haiyan. Nat Hazards 80:211–222

    Google Scholar 

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116:653–659

    CAS  PubMed  Google Scholar 

  • Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31:L05105

    Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306

    Google Scholar 

  • Tougeron K, Tena A (2019) Hyperparasitoids as new targets in biological control in a global change context. Biol Control 130:164–171

    Google Scholar 

  • Tougeron K, Brodeur J, Le Lann C, van Baaren J (2019) How climate change affects the seasonal ecology of insect parasitoids. Ecol Entomol (online)

    Google Scholar 

  • Tougou D, Musolin DL, Fujisaki K (2009) Some like it hot! Rapid climate change promotes changes in distribution ranges of Nezara viridula and Nezara antennata in Japan. Entomol Exp Appl 130:249–258

    Google Scholar 

  • Uphoff N (1999) Agroecological implications of the system of rice intensification (SRI) in Madagascar. Environ Dev Sustain 1:297–313

    Google Scholar 

  • Van Dyck H, Bonte D, Puls R, Gotthard K, Maes D (2015) The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124:54–61

    Google Scholar 

  • Vu Q, Ramal AF, Villegas JM, Jamoralin A, Bernal CC, Pasang JM et al (2018) Enhancing the parasitism of insect herbivores through diversification of habitat in Philippine rice fields. Paddy Water Environ 16:379–390

    Google Scholar 

  • Wang B, Huang F, Wu Z, Yang J, Fu X, Kikuchi K (2009a) Multi-scale climate variability of the South China Sea monsoon: a review. Dyn Atmos Oceans 47:15–37

    Google Scholar 

  • Wang F, Hu G, Chen X, Shen H, Luo S, Xin D et al (2009b) Analysis on the causes of recent outbreaks of Cnaphalocrocis medinalis in Nanning, China. Chin J Rice Sci 23:537–545

    Google Scholar 

  • Wang B-j, Xu H-x, Zheng X-s, Qiang F, Lu Z-x (2010) High temperature modifies resistance performances of rice varieties to brown planthopper, Nilaparvata lugens (Stål). Rice Sci 17:334–338

    CAS  Google Scholar 

  • WMO/FAO (2016) Weather and desert locusts. World Meteorological Organization and Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Wu G, Chen FJ, Ge F (2006) Response of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2. J Appl Entomol 130:2–9

    Google Scholar 

  • Wu L-H, Hill MP, Thomson LJ, Hoffmann AA (2018) Assessing the current and future biological control potential of Trichogramma ostriniae on its hosts Ostrinia furnacalis and Ostrinia nubilalis. Pest Manag Sci 74:1513–1523

    CAS  PubMed  Google Scholar 

  • Wu Y, Gong Z, Bebber DP, Miao J, Zhao Z, Jiang Y et al (2019) Phenological matching drives wheat pest range shift under climate change. bioRxiv e614743

    Google Scholar 

  • Wu J, Ge L, Liu F, Song Q, Stanley D (2020) Pesticide-induced planthopper population resurgence in rice cropping systems. Annu Rev Entomol 65:409–429

    CAS  PubMed  Google Scholar 

  • Xu H, Xie H, Wu S, Wang Z, He K (2019) Effects of elevated CO2 and increased N fertilization on plant secondary metabolites and chewing insect fitness. Front Plant Sci 10:e739

    Google Scholar 

  • Yamano T, Malabayabas M, Gumma M (2013) Adoption, yield, and ex ante impact analysis of Swarna-Sub 1 in Eastern India. STRASA Econ Briefs 2:3–10

    Google Scholar 

  • Yin J, Sun Y, Wu G, Ge F (2010) Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera. Entomol Exp Appl 136:12–20

    CAS  Google Scholar 

  • Yuan X-H, Song L-W, Zhang J-J, Zang L-S, Zhu L, Ruan C-C et al (2012) Performance of four Chinese Trichogramma species as biocontrol agents of the rice striped stem borer, Chilo suppressalis, under various temperature and humidity regimes. J Pest Sci 85:497–504

    Google Scholar 

  • Yukawa J, Kiritani K, Kawasawa T, Higashiura Y, Sawamura N, Nakada K et al (2009) Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Appl Entomol Zool 44:429–437

    Google Scholar 

  • Zhang Z-T, Li J, Sun W (2013) Influences of droughts and floods disasters on the population dynamics of Asian corn borer, Ostrinia furnacalis (Guenee). J Maize Sci 28

    Google Scholar 

  • Zhao Z, Sandhu HS, Ouyang F, Ge F (2016) Landscape changes have greater effects than climate changes on six insect pests in China. Sci China Life Sci 59:627–633

    PubMed  Google Scholar 

  • Zhou C, Yang H, Yang H, Wang Z, Long G-Y, Jin D-C (2019) Effects of sublethal concentrations of deltamethrin on fitness of white-backed planthopper, Sogatella furcifera (Horváth). Int J Pest Manag 65:165–170

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finbarr G. Horgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horgan, F.G. (2020). Potential for an Impact of Global Climate Change on Insect Herbivory in Cereal Crops. In: Jabran, K., Florentine, S., Chauhan, B. (eds) Crop Protection Under Changing Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-46111-9_5

Download citation

Publish with us

Policies and ethics