Skip to main content

Assuring Crop Protection in the Face of Climate Change Through an Understanding of Herbicide Metabolisms and Enhanced Weed Control Strategies

  • Chapter
  • First Online:
Crop Protection Under Changing Climate

Abstract

The prevention and management of weeds have been difficult throughout the history of food production. We are now entering into a new era where new challenges are arising more rapidly due in part to the rapid population growth, which places an unprecedented demand upon both natural and agricultural ecosystems to fulfil food, fibre, and feed for at least another two billion people by 2050. Climatic change is associated with a higher frequency of extreme weather events, and it is generally agreed that this will have a drastic impact on ecosystem productivity and biodiversity. The present world atmospheric temperature has increased by 1.0 °C since 1900 with half of this rise coming in the past 30 years. Crop production is directly affected by the direct effects of climate change (temperature and water stress) and indirect effects of increased competition from weeds and other pest species. In a field situation, crop plants are inevitably surrounded by an assemblage of C3 and C4 plants, and a considerable variation in the growth response of weeds to climate change have been reported. In this chapter, we present an overview of the impact of temperature rise, carbon dioxide increase, and changed rainfall patterns on weed composition, distribution, abundance, and our current approaches to weed management. There is a high risk that some weed species will shift their range with the change in temperature and precipitation patterns. The efficacy of chemical weed control depends on the environmental conditions before, during and after the herbicide application. The changes in physiology, morphology, and anatomy of plants will result in altered weed growth, crop-weed competition, and herbicide efficacy under elevated temperature and/or carbon dioxide. Global warming may increase the risk of evolution of nontarget site resistance mechanisms against herbicides in the weed plants and thus decrease herbicide efficacy. The anticipated actions in these areas are also discussed in the end which may enhance our understanding of the impact of climate change on the practice and future of weed management and crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climatic change on agriculture: an interpretative review. Climate Res 11:19–30

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of Free-Air CO2 Enrichment (FACE)? A meta-analysis review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoo Ra HH, Zhu XG, Curtis PS, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Chang Biol 8:695–709

    Article  Google Scholar 

  • Akita S, Moss DN (1972) Differential stomatal response between C3 and C4 species to atmospheric CO2 concentration and light. Crop Sci 12:789–793

    Article  Google Scholar 

  • Alberto AM, Ziska LH, Cervancia CR, Manalo PA (1996) The influence of increasing carbon dioxide and temperature on competitive interactions between a C3 crop and a C4 weed. Aust J Plant Physiol 23:795–802

    Google Scholar 

  • Anten NP, Hirose T, Onoda Y, Kinugasa T, Kim YH, Okada M (2003) Elevated CO2and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytol 161:459–471

    Article  PubMed  Google Scholar 

  • Archambault DJ (2007) Efficacy of herbicides under elevated temperature and CO2. In: Newton PCD, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC Press, Boca Raton, pp 272–279

    Google Scholar 

  • Bailey SW (2004) Climate change and decreasing herbicide persistence. Pest Manag Sci 60:158–162

    Article  CAS  PubMed  Google Scholar 

  • Baker HG (1965) Characteristics and mode of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–168

    Google Scholar 

  • Baldocchi D, Wong S (2008) Accumulated winter chill is decreasing in the fruit growing regions of California. Clim Change 87(1):153–166

    Article  Google Scholar 

  • Barnaby JY, Ziska LH (2012) Plant responses to elevated CO2. In: Encyclopedia of Life Sciences (eLS). Wiley, p e23718

    Google Scholar 

  • Batts GR, Morison JIL, Ellis RH, Hadley P, Wheeler TR (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron 7:43–52

    Article  Google Scholar 

  • Bazzaz FA, Carlson MR (1984) The response of plants to elevated CO2. I Competition among the assemblage of annuals at two levels of soil moisture. Oecologia 62:196–198

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz FA, Garbutt K, Reekie EG, Williams WE (1989) Using growth analysis to interpret competition between a C3 and C4 annual under ambient and elevated CO2. Oecologia 79:223–235

    Article  CAS  PubMed  Google Scholar 

  • Beestman GB, Deming JM (1974) Dissipation of acetanilide herbicides from soils. Agron J 66(2):308–311

    Article  CAS  Google Scholar 

  • Belote RT, Weltzin JF, Norby RJ (2003) Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol 161:827–835

    Article  Google Scholar 

  • Blank RR, White R, Ziska LH (2006) Combustion properties of Bromus tectorum L.: influence of ecotype and growth under four CO2 concentrations. Int J Wildland Fire 15:227–236

    Article  CAS  Google Scholar 

  • Bleier JS, Jackson RD (2007) Manipulating the quantity, quality and manner of C addition to reduce soil inorganic N and increase C4:C3 grass biomass. Restor Ecol 15:688–695

    Article  Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148

    Article  CAS  Google Scholar 

  • Blumenthal D, Chimner RA, Welker JM, Morgan JA (2008) Increased snow facilitates plant invasion in mixed grass prairie. New Phytol 179:440–448

    Article  PubMed  CAS  Google Scholar 

  • Booth BD, Swanton CJ (2002) Assembly theory applied to weed communities. Weed Sci 50:2–13

    Article  CAS  Google Scholar 

  • Bowes G (1996) Photosynthesis responses to changing atmospheric carbon dioxide concentration. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Publ., Dordrecht, pp 87–407

    Google Scholar 

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591

    Article  CAS  PubMed  Google Scholar 

  • Boydston RA, Mojtahedi H, Crosslin JM, Brown CR, Anderson T (2008) Effect of hairy night shade (Solanum sarrachoides) presence on potato nematodes, diseases, and insect pests. Weed Sci 56:151–154

    Article  CAS  Google Scholar 

  • Bridges DC (1992) Crop losses due to weeds in the United States. Weed Science Society of America, Champaign, 403p

    Google Scholar 

  • Brookes G, Barfoot P (2008) Global impact of biotech crops: socioeconomic and environmental effects, 1996–2006. AgBioforum 11:21–38

    Google Scholar 

  • Bunce JA (1995) Long-term growth of alfalfa and orchard grass plots at elevated carbon dioxide. J Biogeogr 22:341–348

    Article  Google Scholar 

  • Bunce JA, Ziska LH (2000) Crop ecosystem responses to climatic change: crop/weed interactions. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CABI Publishing, New York, pp 333–352

    Chapter  Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci U S A 10:12052–12057

    Article  Google Scholar 

  • Canadell JG, LeQuéré C, Raupach MR, Field CB, Buitenhuis ET, Clais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric growth from economic activity, carbon intensity and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson HL, Hill JE (1985) Wild oat (Avena fatua) competition with spring wheat: effects of nitrogen fertilization. Weed Sci 34:29–33

    Article  Google Scholar 

  • Chamberlain J, Gittens A (2004) Parthenium weed-management: challenges, opportunities and strategies. Parthenium Action Group. The State of Queensland Department of Natural Resources, Mines and Energy, Brisbane, p 82

    Google Scholar 

  • Chauhan BS, Ramesh K (2015) Weed regimes in agro-ecosystems in the changing climate scenario – A review. Ind J Agron 60(4):479–484

    CAS  Google Scholar 

  • Chauhan BS, Prabhjyot-Kaur MG, Randhawa RK, Singh H, Kang MS (2014) Global warming and its possible impacts on agriculture in India. Adv Agron 123:65–121

    Article  Google Scholar 

  • Clements DR, Ditommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Article  Google Scholar 

  • Coble HD, Williams FM, Ritter RL (1981) Common ragweed (Ambrosia artemissifolia) interference in soybean (Glycine max). Weed Sci 29:339–342

    Article  Google Scholar 

  • Conroy JP, Seneweera S, Basra AS, Rogers G, Nissenwooller B (1994) Influence of rising CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Aust J Plant Physiol 21:741–758

    Google Scholar 

  • Cushman RM (1999) Global climatic-change modeling and monitoring. In: Alexander DE, Fairbridge RW (eds) Encyclopedia of environmental science. Kluwer Academic Publishers, Dordrecht, pp 291–298

    Google Scholar 

  • Dekker J, Duke OS (1995) Herbicide resistant field crops. Adv Agron 54: 69–116

    Google Scholar 

  • Délye C (2013) Unravelling the genetic bases of non-target-site based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176–187

    Article  PubMed  CAS  Google Scholar 

  • Délye C, Jasieniuk M, Le Corre V (2013) Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29:649–658

    Article  PubMed  CAS  Google Scholar 

  • Dikšaityte A, Januškaitiene I and Juknys R (2014) Impact of elevated atmospheric CO2 concentration on pea and white melilot at three levels of nitrogen fertilization. In: The 9th international conference “Environmental Engineering”. Section environmental protection. Selected papers. Article number: enviro.2014.015

    Google Scholar 

  • Donald WW (1990) Management and control of Canada thistle. Rev Weed Sci 5:193–250

    CAS  Google Scholar 

  • Dyson T (2001) World food trends: a neo-Malthusian prospect? Proc Am Philosophical Soc 145:438–455

    CAS  Google Scholar 

  • Edwards GE, Huber S (1981) The C4 pathway. In: Hatch MD, Boardman NK (eds) The biochemistry of plants. Academic, New York, pp 238–281

    Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Erickson JE, Megonigal JP, Peresta G, Drake BG (2007) Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Glob Chang Biol 13:202–215

    Article  Google Scholar 

  • Fantke P, Gillespie BW, Juraske R, Jolliet O (2014) Estimating half-lives for pesticide dissipation from plants. Environ Sci Technol 48:8588–8602

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2018) World summit on food security. Food and agriculture organization of the united nations-statistics division. http://www.fao.org/wsfs/world-summit/en. Accessed 25 Feb 2018

  • Fernando N, Panozzo J, Tausz M, Norton R, Fitzgerald G, Khan A, Seneweera S (2015) Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem 170:448–454

    Article  CAS  PubMed  Google Scholar 

  • Fernando N, Manalil S, Florentine SK, Chauhan BS, Seneweera S (2016) Glyphosate resistance of C3 and C4 weeds under rising atmospheric CO2. Front Plant Sci 7:910

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint EP, Patterson DT, Beyers JL (1983) Interference and temperature effects on growth of cotton (Gossypium hirsutum), spurred anoda (Anoda cristata), and velvetleaf (Abutilon theophrasti). Weed Sci 31:892–898

    Article  Google Scholar 

  • Fried G, Petit S, Rebound X (2010) A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. Bio Med Central Ecol 10:1–11

    Article  Google Scholar 

  • Froud-Williams RJ (1996) Weeds and climate change: implications for their ecology and control. Asp Appl Biol 45:187–196

    Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20

    Article  CAS  Google Scholar 

  • Gains TA, Shaner DL, Ward SM, Leach JE, Preston C, Westra P (2011) Mechanism of resistance of evolved glyphosate-resistant palmer amaranth (Amaranthus palmeri). J Agric Food Chem 59:5886–5889

    Article  CAS  Google Scholar 

  • Ge X, D’Avignon D, Ackerman JJH, Duncan B, Spaur MB, Sammons RD (2011) Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Manag Sci 67:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Gealy DR, Mitten DH, Rutger JN (2003) Gene flow between red rice (Oryza sativa) and herbicide resistant rice (O. sativa): implications for weed management. Weed Technol 17:627–645

    Article  Google Scholar 

  • Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Gibson KD, Johnson WG, Hillger DE (2005) Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol 19:1065–1070

    Article  Google Scholar 

  • Griffin JG, Thomas GR, Mason-Pharr D (2004) Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J Am Soc Hort Sci 129(4):497–502

    Article  CAS  Google Scholar 

  • Gustafson DI (2011) Climate change: a crop protection challenge for the twenty-first century. Pest Manag Sci 67:691–696

    Article  CAS  PubMed  Google Scholar 

  • Hall AE, Allen LH Jr (1993) Designing cultivars for the climatic conditions of the next century. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop sci. Crop Science Society of America, Madison, pp 291–297

    Google Scholar 

  • Han H, Yu Q, Cawthray GR, Powles SB (2013) Enhanced herbicide metabolism induced by 2, 4-D in herbicide susceptible Lolium rigidum provides protection against diclofop-methyl. Pest Manag Sci 69:996–1000

    Article  CAS  PubMed  Google Scholar 

  • Hanzlik K, Gerowitt B (2012) Occurrence and distribution of important weed species in German winter oilseed rape fields. J Plant Dis Prot 119:107–120

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatch M (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochem Biophys Acta 895:81–106

    CAS  Google Scholar 

  • Heap I (2018) The international survey of herbicide resistant weeds. http://www.weedscience.com. Accessed 25 Feb 2018

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Högy P, Wieser H, Koehler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A (2009) Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol 11:60–69

    Article  PubMed  CAS  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25

    Article  Google Scholar 

  • HRAC (2018) Classification of herbicides according to mode of action. http://wwwhracglobalcom Accessed 25 Feb 2018

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 976

    Google Scholar 

  • Johnson BC, Young BG (2002) Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci 50(2):157–161

    Article  CAS  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running and stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  PubMed  Google Scholar 

  • Kathiresan RM (2017) Anticipatory research in weed science to mitigate climate change impact. In: Proceedings of biennial conference of the Indian Society of Weed Science on “Doubling farmers’ income by 2022: The role of weed science”, held during 1–3 March at MPUA&T, Udaipur, India, pp 11

    Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Response of agricultural crops to free-air CO2 –enrichment. Adv Agron 77: 293–368

    Google Scholar 

  • Knapp AK, Hamerlyn CK, Owensby CE (1993) Photosynthetic and water relations response to elevated CO2 in the C4 grass, Andropogon gerardii. Int J Plant Sci 154:459–466

    Article  CAS  Google Scholar 

  • Korres NE (2005) Encyclopaedic dictionary of weed science: theory and digest. Intercept Andover, Paris, 695

    Google Scholar 

  • Korres NE, Norsworthy JK, Bagavathiannan MV, Mavromoustaki A (2015) Distribution of arable weed populations along eastern Arkansas Mississippi Delta roadsides; factors affecting weed occurrence. Weed Technol 29(3):596–604

    Article  Google Scholar 

  • Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, Gealy DR, Moss SR, Burgos NR, Miller MR, Palhano M (2016) Cultivars to face climate change effects on crops and weeds: a review. Agron Sustain Dev 36:12

    Article  Google Scholar 

  • Kraehmer H, Almsick VA, Beffa R, Dietrich H, Eckes P, Hacker E, Hain R, Strek HJ, Stuebler H, Willms L (2014) Herbicides as weed control agents: state of the art: II. Recent achievements. Plant Physiol 166:1132–1148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudsk P, Kristensen JL (1992) Effect of environmental factors on herbicide performance. Proceedings of the First International Weed Control Congress, Melbourne, pp 173–186

    Google Scholar 

  • Lal R, Kimble JM, Follett RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, 128

    Google Scholar 

  • Lara MV, Andreo CS (2011) C4 plants adaptation to high levels of CO2 and to drought environments. In: Shankar A (ed) Abiotic stress in plants – mechanisms and adaptations. InTech, pp 415–428

    Google Scholar 

  • Lasat MM, DiTomaso JM, Hart JJ, Kochian LV (1996) Resistance to paraquat in Hordeum glaucum is temperature dependent and not associated with enhanced apoplasmic binding. Weed Res 36:303–309

    Article  CAS  Google Scholar 

  • Le Houerou HN (1996) Climate changes, drought and desertification. J Arid Environ 34:133–185

    Article  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DB (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Lee JS (2011) Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species. Agric Ecosyst Environ 140:484–491

    Article  Google Scholar 

  • Leegood RC (2002) C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot 53:581–590

    Article  CAS  PubMed  Google Scholar 

  • Long SP (1999) Environmental responses. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 215–249

    Chapter  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentration. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Mahan JR, Dotray PA, Light GG, Dawson KR (2006) Thermal dependence of bioengineered glufosinate tolerance in cotton. Weed Sci 54:1–5

    Article  CAS  Google Scholar 

  • Manea A, Leishman MR, Downey PO (2011) Exotic C4 grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Sci 59:28–36

    Article  CAS  Google Scholar 

  • Martinez-Ghersa MA, Ghersa CM, Satorre EH (2000) Co-evolution of agricultural systems and their weed companions: implications for research. Field Crop Res 67:181–190

    Article  Google Scholar 

  • Matsunaka S (1983) Evolution of rice weed control practices and research: world perspective. In: Weed control in rice. IRRI, Manila, pp 5–18

    Google Scholar 

  • Matzrafi M, Seiwert B, Reemtsma T, Rubin B, Peleg Z (2016) Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta 244: 1217–1227

    Google Scholar 

  • McDonald A, Riha S, DiTommaso A, DeGaetano A (2009) Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140

    Article  Google Scholar 

  • Mcdowell RW, Condron LM, Main BE, Dastgheib F (1997) Dissipation of imazapyr, flumetsulam and thifensulfuron in soil. Weed Res 37(6):381–389

    Article  CAS  Google Scholar 

  • McFadden JJ, Frear CS, Mansager ER (1989) Aryl hydroxylation of diclofop by a cytochrome P450 dependent monooxygenase from wheat. Pestic Biochem Physiol 34:92–100

    Article  CAS  Google Scholar 

  • Meissle M, Mouron P, Bigler MT, Pons X, Vasileiadis VP, Otto S, Antichi D, Kiss J, Pálinkás Z, Dorner Z, Weide RVD, Groten J, Czembor E, Adamczyk J, Thibord JB, Melander B, Nielsen GC, Poulsen RT, Zimmermann O, Verschwele A, Oldenburg E (2010) Pests, pesticide use and alternative options in European maize production: current status and future prospects. J Appl Entomol 134:357–375

    Article  Google Scholar 

  • Milakovic I, Fiedler K, Karrer G (2014) Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res 54:256–264

    Article  Google Scholar 

  • Miri HR, Rastegar A, Bagheri AR (2012) The impact of elevated CO2 on growth and competitiveness of C3 and C4 crops and weeds. Euro J Exp Bio 2(4):1144–1150

    CAS  Google Scholar 

  • Moore BD, Franceschi VR, Cheng SH, Wu J, Ku MSB (1987) Photosynthetic characteristics of the C3-C4 intermediate Parthenium hysterophorus. Plant Physiol 85:984–989

    Article  Google Scholar 

  • Morrison JI, Gifford RM (1984) Plant growth and water use with limited supply in high CO2 concentrations. I. Leaf area, water use and transpiration. Aust J Plant Physiol 11:361–374

    Google Scholar 

  • Mortensen DA, Coble HD (1989) The influence of soil water content on common cocklebur (Xanthium strumarium) interference with soybean (Glycine max). Weed Sci 37:76–83

    Article  Google Scholar 

  • Mpelasoka F, Hennessy K, Jones R, Bates B (2008) Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int J Climatol 28:1283–1292

    Article  Google Scholar 

  • Naidu VSGR, Paroha S (2008) Growth and biomass partitioning in two weed species Parthenium hysterophorus (C3) and Amaranthus viridis (C4) under elevated CO2. Eco Env Cons 14(4):9–12

    Google Scholar 

  • Naidu VSGR, Varshney JG (2010) Interactive effect of elevated CO2, drought and weed competition on carbon isotope discrimination (∆13C) in wheat (Triticum aestivum) leaves. Indian J Agric Sci 81(11):1026–1029

    Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell CC, Adkins SW (2001) Wild oat and climate change: the effect of CO2 concentration, temperature, and water deficit on the growth and development of wild oat in monoculture. Weed Sci 49:694–702

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Ozturk M, Rehder H, Zeigler H (1981) Biomass production of C3 and C4 plant species in pure and mixed culture with different water supply. Oecologia (Berl) 50:73–81

    Article  Google Scholar 

  • Pandey DK, Palni LMS, Joshi SC (2003) Growth, reproduction, and photosynthesis of ragweed parthenium (Parthenium hysterophorus). Weed Sci 51:191–201

    Article  CAS  Google Scholar 

  • Parmesan C (1996) Climate and species’ range. Nature 382:765–766

    Article  CAS  Google Scholar 

  • Patra AK, Kumar M, Justin GK (2012) Potential impact of climate change on soil fertility and fertilizer use in India. Ind J Fert 8(11):42–55

    CAS  Google Scholar 

  • Patterson DT (1985) Comparative eco-physiology of weeds and crops. In: Duke SO (ed) Weed physiology. CRC Press, Boca Raton, pp 101–129

    Google Scholar 

  • Patterson DT (1986) Responses of soybean (Glycine max) and three C4 grass weeds to CO2 enrichment during drought. Weed Sci 34:203–210

    Article  Google Scholar 

  • Patterson DT (1993) Implications of global climate change for impact of weeds, insects and plant diseases. In: Buxton DR (ed) International crop science I. Crop Science Society of America, Madison, pp 273–280

    Google Scholar 

  • Patterson DT (1995a) Effects of environmental stress on weed/crop interactions. Weed Sci 43:483–490

    Article  CAS  Google Scholar 

  • Patterson DT (1995b) Weeds in a changing climate. Weed Sci 43:685–701

    Article  CAS  Google Scholar 

  • Patterson DT, Flint EP (1980) Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Sci 28:70–75

    Google Scholar 

  • Patterson DT, Meyer CR, Flint EP, Quimby PC Jr (1979) Temperature responses and potential distribution of itchgrass (Rottboellia exaltata) in the United States. Weed Sci 27:77–82

    Article  Google Scholar 

  • Patterson DT, Flint EP, Dickens R (1980) Effects of temperature, photoperiod, and population source on the growth of cogongrass (Imperata cylindrica). Weed Sci 28:205–509

    Google Scholar 

  • Patterson DT, Musser RL, Flint EP, Eplee RE (1982) Temperature responses and potential for spread of witchweed (Striga lutea) in the United States. Weed Sci 30:87–93

    Article  Google Scholar 

  • Patterson DT, Flint EP, Beyers JL (1984) Effectsof CO2 enrichment on competition between a C4 weed and a C3 crop. Weed Sci 32:101–105

    Article  Google Scholar 

  • Patterson DT, Russell AE, Mortensen DA, Coffin RD, Flint EP (1986) Effects of temperature and photoperiod on Texas panicum (Panicum texanum) and wild proso millet (Panicum miliaceum). Weed Sci 34:876–882

    Article  Google Scholar 

  • Patterson DT, Highsmith MT, Flint EP (1988) Effects of temperatutre and CO2 concentration on the growth of cotton (Gossypium hirsutum), spurred anoda (Anoda cristata), and velvetleaf (Abutilon theophrasti). Weed Sci 36:751–757

    Article  Google Scholar 

  • Patterson DT, Westbrook JK, Joyce RJV, Lingren PD, Rogasik J (1999) Weeds, insects and diseases. Clim Change 43:711–727

    Article  CAS  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agron Sustain Dev 34:707–721

    Article  Google Scholar 

  • Portis AR Jr, Parry MAJ (2007) Discoveries in Rubisco (ribulose 1,5-biphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94:121–143

    Article  CAS  PubMed  Google Scholar 

  • Ramsey RJL, Stephenson GR, Hall JC (2005) A review of the effects of humidity, humectants and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pest Biochem Physiol 82(2):162–175

    Article  CAS  Google Scholar 

  • Rivers J, Warthmann N, Pogson B, Borevitz J (2015) Genomic breeding for food, environment and livelihoods. Food Security 7:375–382

    Article  Google Scholar 

  • Robinson EA, Ryan GD, Newman JA (2012) Meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336

    Article  CAS  PubMed  Google Scholar 

  • Robinson MA, Letarte J, Cowbrough MJ, Sikkema PH, Tardif FJ (2015) Winter wheat (Triticum aestivum L.) response to herbicides as affected by application timing and temperature. Can J Plant Sci 95:325–333

    Article  CAS  Google Scholar 

  • Rodenburg J, Meinke H, Johnson DE (2011) Challenges for weed management in African rice systems in a changing climate. J Agric Sci 149:427–435

    Article  Google Scholar 

  • Rogers HH, Runion GB, Prior SA, Price AJ, Torbert HA, Gjerstad DH (2008) Effects of elevated atmospheric CO2 on invasive plants: comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.). J Environ Qual 37:395–400

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated CO2 concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig C, Hillel D (1998) Effects on weeds, insects and diseases. In: Rosenzweig C, Hillel D (eds) Climate change and the global harvest. Oxford University Press, Oxford, pp 101–122

    Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. I. Leaf nitrogen, growth and biomass partitioning in Chenopodium album and Amaranthus retroflexus. Plant Physiol 84:954–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Christin PA, Edwards EA (2011) The C4 plant lineages of planet Earth. J Exp Bot 62:155–169

    Article  CAS  Google Scholar 

  • Sasek TW, Strain BR (1990) Implications of atmospheric CO2 enrichment and climatic change for the geographical distribution of two introduced vines in the USA. Clim Change 16: 31–51

    Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci U S A 106:15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seneweera S, Makino A, Mae A, Basra AS (2005) Response of rice to p[CO2] enrichment: the relationship between photosynthesis and nitrogen metabolism. J Crop Improv 13:31–53

    Article  CAS  Google Scholar 

  • Shabbir A, Dhileepan K, Khan N, Adkins SW (2014) Weed-pathogen interactions and elevated CO2: growth changes in favour of the biological control agent. Weed Res 54:217–222

    Article  CAS  Google Scholar 

  • Shabbir A, Dhileepan K, Zalucki MP, Adkins SW (2015) The response of an invasive weed and its biological control agent under a changing climate of CO2 enrichment: management challenges for the future. In: Proceedings of 25th Asian-Pacific Weed Science Society Conference on “Weed Science for Sustainable Agriculture, Environment and Biodiversity”, Hyderabad, India during 13–16 October, p 33

    Google Scholar 

  • Sharma SD, Singh M (2001) Environmental factors affecting absorption and bio-efficacy of glyphosate in Florida beggarweed (Desmodium tortuosum). Crop Prot 20:511–516

    Article  CAS  Google Scholar 

  • Shivrain VK, Burgos NR, Anders MM, Rajguru SM, Moore J, Sales MA (2007) Gene flow between Clearfield™ rice and red rice. Crop Prot 26:349–356

    Article  CAS  Google Scholar 

  • Shivrain VK, Burgos NR, Sales MA, Mauromoustakos A, Gealy DR, Smith KL, Black HL, Jia M (2009) Factors affecting the outcrossing rate between Clearfield™ rice and red rice (Oryza sativa). Weed Sci 57:394–403

    Article  CAS  Google Scholar 

  • Singh RP, Singh RK, Singh MK (2011) Impact of climate and carbon dioxide change on weeds and their management. Indian J Weed Sci 43(1–2):1–11

    Google Scholar 

  • Sionit N, Hellmers H, Strain BR (1980) Growth and yield of wheat under CO2 enrichment and water stress. Crop Sci 20:687–690

    Article  Google Scholar 

  • Song L, Wu J, Changhan L, Furong L, Peng S, Chen B (2009) Different responses of invasive and native species to elevated CO2 concentration. Acta Oecol 35:128–135

    Article  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    Article  CAS  Google Scholar 

  • Storkey J, Cussans JW (2000) Relationship between temperature and the early growth of Triticum aestivum and three weed species. Weed Sci 48:467–473

    Article  CAS  Google Scholar 

  • Stratonovitch P, Storkey J, Semenov AA (2012) A process-based approach to modeling impacts of climate change on the damage niche of an agricultural weed. Glob Chang Biol 18:2071–2080

    Article  Google Scholar 

  • Tanaka R, Koike F (2011) Prediction of species composition of plant communities in a rural landscape based on species traits. Ecol Res 26:27–36

    Article  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Chang Biol 14:565–575

    Article  Google Scholar 

  • Treharne K (1989) The implications of the ‘greenhouse effect’ for fertilizers and agrochemicals. In: Bennet RC (ed) The greenhouse effect and UK agriculture, CAS Paper 19. Univ of Reading Press, Reading, pp 67–78

    Google Scholar 

  • Tungate KD, Israel DW, Watson DM, Rufty TW (2007) Potential changes in weed competitiveness in an agroecological system with elevated temperatures. Environ Exp Bot 60:42–49

    Article  Google Scholar 

  • Tuong TP, Bouman BAM (2003) Rice production in water-scarce environments. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvements. CABI Publishing, Wallingford, pp 53–67

    Chapter  Google Scholar 

  • Valerio M, Tomecek M, Lovelli S, Ziska LH (2011) Quantifying the effect of drought on carbon dioxide-induced changes in competition between a C3 crop (tomato) and a C4 weed (Amaranthus retroflexus). Weed Res 51:591–600

    Article  CAS  Google Scholar 

  • Valerio M, Tomecek M, Lovelli S, Ziska LH (2013) Assessing the impact of increasing carbon dioxide and temperature on crop-weed interactions for tomato and a C3 and C4 weed species. Eur J Agron 50:60–65

    Article  CAS  Google Scholar 

  • Varanasi A, Prasad PVV, Jugulam M (2015) Impact of climate change factors on weeds and herbicide efficacy. Adv Agron 135:107–146

    Article  Google Scholar 

  • Vengris J, Colby WG, Drake M (1955) Plant nutrient competition between weeds and corn. Agron J 47:213–216

    Article  Google Scholar 

  • Viger PR, Eberlein CV, Fuerst EP, Gronwald JW (1991) Effects of CGA-154281 and temperature on metolachlor absorption and metabolism, glutathione content, and glutathione-s-transferase activity in corn. Weed Sci 39:324–328

    Article  CAS  Google Scholar 

  • Walter KJ, Armstrong KV (2014) Benefits, threats and potential of Prosopis in South India. Forests Trees Livelihoods 23(4):232–247

    Article  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Chang Biol 5:723–741

    Article  Google Scholar 

  • Wang M, Wu Y, Elgowainy A (2007) Operating manual for GREET: version 1.7. Center for Transportational Research, Energy Systems Division, Argonne National Laboratory, Argonne, 149

    Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob Chang Biol 5:857–867

    Article  Google Scholar 

  • Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol 8:279–282

    Article  Google Scholar 

  • Weart SR (2003) The discovery of global warming. Harvard University Press, Cambridge, MA, 228pp

    Google Scholar 

  • Webb AAR, McAinsh MR, Mansfield TA, Hetherington AM (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J 9:297–304

    Article  CAS  Google Scholar 

  • Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Vara Prasad PV (2005) Temperature variability and the yield of annual crops. Agric Ecosyst Environ 82:159–167

    Article  Google Scholar 

  • Wiese AF, Vandiver CW (1970) Soil moisture effects on competitive ability of weeds. Weed Sci 18:518–519

    Article  Google Scholar 

  • Willingham SD, Senseman SA, McCauley GN, Chandler JM (2008) Effect of temperature and propanil on penoxsulam efficacy, absorption, and translocation in alligatorweed (Alternanthera philoxeroides). Weed Sci 56:780–784

    Article  CAS  Google Scholar 

  • Woodward FI, Williams BG (1987) Climate and plant distribution at global and local scales. Plant Ecol 69(1):189–197

    Article  Google Scholar 

  • Yoshie F (1986) Intercellular CO2 concentration and water use efficiency of temperate plants with different life forms and from different microhabitats. Oecologia 68:370–374

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Tao B, Messersmith CG, Nalewaja JD (2007) Glyphosate efficacy on velvetleaf (Abutilon theophrasti) is affected by stress. Weed Sci 55:240–244

    Article  CAS  Google Scholar 

  • Zhu C, Zeng ZLH, Zhu J, Xie Z, Liu G (2008) Effect of nitrogen supply on carbon dioxide-induced changes in competition between rice and barnyard grass (Echinochloa crus-galli). Weed Sci 56:66–71

    Article  CAS  Google Scholar 

  • Ziska LH (2000) The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Glob Chang Biol 6:899–905

    Article  Google Scholar 

  • Ziska LH (2001) Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed Sci 49:622–627

    Article  CAS  Google Scholar 

  • Ziska LH (2003a) Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. J Exp Bot 54(381):395–404

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH (2003b) Climate change, plant biology and public health. World Res Rev 15:271–288

    Google Scholar 

  • Ziska LH (2003c) Evaluation of yield loss in field sorghum from a C3 and C4 weed with increasing CO2. Weed Sci 51:914–918

    Article  CAS  Google Scholar 

  • Ziska LH (2004) Rising carbon dioxide and weed ecology. In: Inderjit (ed) Weed biology and management. Kluwer Academic, Dordrecht, pp 159–176

    Chapter  Google Scholar 

  • Ziska LH (2010) Elevated carbon dioxide alters chemical management of Canada thistle in no-till soybean. Field Crop Res 119:299–303

    Article  Google Scholar 

  • Ziska LH (2014) Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States. PLoS One 9(6):e98516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziska LH (2016) The role of climate change and increasing atmospheric carbon dioxide on weed management: herbicide efficacy. Agric Ecosyst Environ 231:304–309

    Article  CAS  Google Scholar 

  • Ziska LH, Bunce JA (1995) Growth and photosynthetic response of three soybean cultivars to simultaneous increases in growth temperature and CO2. Physiol Plant 94:575–584

    Article  CAS  Google Scholar 

  • Ziska LH, Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth Res 54:199–208

    Article  CAS  Google Scholar 

  • Ziska LH, Bunce JA (2006) Plant responses to rising carbon dioxide, In: Plant Growth and Climate Change (Eds: Morison JIL, Morecroft MD), Oxford-Blackwell Publishing Ltd. pp 17–47

    Google Scholar 

  • Ziska LH, Bunce JA (2007) Predicting the impact of changing CO2 on crop yields: Some thoughts on food. New Phytol 175: 607–618

    Google Scholar 

  • Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Aust J Plant Physiol 27:893–898

    Google Scholar 

  • Ziska LH, Dukes J (2011) Weed management: herbicides. In: Weed biology and climate change. Wiley-Blackwell, Ames, pp 143–162

    Chapter  Google Scholar 

  • Ziska LH, Goins EW (2006) Elevated atmospheric carbon dioxide and weed populations in glyphosate treated soybean. Crop Sci 46:1354–1359

    Article  Google Scholar 

  • Ziska LH, McClung A (2008) Differential response of cultivated and weedy (red) rice to recent and projected increases in atmospheric carbon dioxide. Agron J 100:1259–1263

    Article  CAS  Google Scholar 

  • Ziska LH, McConnellLL (2016) Climate change, carbon dioxide, and pest biology: monitor, mitigate, manage. J Agric Food Chem 64:6–12

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Runion GB (2007) Future weed, pest and disease problems for plants. In: Newton PCD, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC Press, Boca Raton, pp 261–287

    Google Scholar 

  • Ziska LH, Teasdale JR (2000) Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Aust J Plant Physiol 27:159–166

    CAS  Google Scholar 

  • Ziska LH, Weerakoon W, Namuco OS, Pamplona R (1996) The influence of nitrogen on the elevated CO2 response in field grown rice. Aust J Plant Physiol 23:45–52

    CAS  Google Scholar 

  • Ziska LH, Teasdale JR, Bunce JA (1999) Future atmospheric carbon dioxide concentrations may increase tolerance to glyphosate. Weed Sci 47:608–615

    Article  CAS  Google Scholar 

  • Ziska LH, Faulkner SS, Lydon J (2004) Changes in biomass and root:shoot ratio of field-grown Canada thistle (Cirsium arvense), noxious, invasive weed, with elevated CO2: implications for control with glyphosate. Weed Sci 52:584–588

    Article  CAS  Google Scholar 

  • Ziska LH, Reeves JB III, Blank B (2005) The impact of recent increases in atmospheric CO2 on biomass production and vegetative retention of cheatgrass (Bromus tectorum): implications for fire disturbance. Glob Chang Biol 11:1325–1332

    Article  Google Scholar 

  • Ziska LH, Sicher RC, George K, Mohan JE (2007) Rising atmospheric carbon dioxide and potential impacts on the growth and toxicity of poison ivy (Toxicodendron radicans). Weed Sci 55:288–292

    Article  CAS  Google Scholar 

  • Ziska LH, Epstein PR, Schlesinger WH (2009) Rising CO2, climate change, and public health: exploring the links to plant biology. Environ Health Perspect 117:155–158

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Tomecek MB, Gealy DR (2010) Competitive interactions between cultivated and red rice as a function of recent and projected increases in atmospheric carbon dioxide. Agron J 102:118–123

    Article  CAS  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB, Hunt ER Jr, Diaz-Soltero H (2011) Invasive species and climate change: an agronomic perspective. Clim Change 105:13–42

    Article  Google Scholar 

  • Ziska LH, Gealy DR, Tomecek MB, Jackson AK, Black HL (2012) Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa). PLoS One 7(5):e37522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagirath S. Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, S., Jabran, K., Florentine, S., Chauhan, B.S. (2020). Assuring Crop Protection in the Face of Climate Change Through an Understanding of Herbicide Metabolisms and Enhanced Weed Control Strategies. In: Jabran, K., Florentine, S., Chauhan, B. (eds) Crop Protection Under Changing Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-46111-9_2

Download citation

Publish with us

Policies and ethics