Skip to main content

Agriculture and Crop Protection; Its Global Importance and Relationship with Climate Change

  • Chapter
  • First Online:
Crop Protection Under Changing Climate

Abstract

Agricultural practice, which includes well-established systems of cropping, pasture and forestry, represents a continual and essential dependence on healthy arable land across the globe and requires safeguarding with sustainable fertilization and pest control measures. This natural resource system must be continually protected from deliberate and inadvertent damage, in order to provide a suitable source of current and future amenities for all inhabitants of the planet. In this respect, it is morally and ethically necessary that we strive to manage the productivity and well-being of agricultural land in a way that will fulfil the necessities of the present generations and do not compromise needs of the future generations (Bruntland et al. 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The increase in stratospheric ozone (O3) is another concerning key factor in future atmospheric changes as it can cause visual plant injuries (Benton et al. 2000). The thinning in protective ozone layer also can lead to increased levels of ultraviolet (UV) radiations causing implications for crop cultivars and plants (Krupa et al. 1998).

  2. 2.

    For example, weeds such as itchgrass (Rottboellia cochinchinensis), which is currently restricted to the Mediterranean region, with its tropic and sub tropic conditions, are expected to expand their range to temperate regions with the expected future climatic conditions (Fuhrer 2003).

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372

    PubMed  Google Scholar 

  • Anderson WB, Seager R, Baethgen W, Cane M, You L (2019) Synchronous crop failures and climate-forced production variability. Science Adv 5(7):eaaw1976

    CAS  Google Scholar 

  • Andrew NR, Hill SJ, Binns M, Bahar MH, Ridley EV, Jung M-P, Fyfe C, Yates M, Khusro M (2013) Assessing insect responses to climate change: what are we testing for? Where should we be heading? Peer J 1:11

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8(1):1–16

    Google Scholar 

  • Bansal S, James JJ, Sheley RL (2014) The effects of precipitation and soil type on three invasive annual grasses in the western United States. J Arid Environ 104:38–42

    Google Scholar 

  • Battisti A , Larsson S (2015) Climate change and insect pest distribution range. In: Climate change and insect pests. CABI, Wallingford, pp 1–15

    Google Scholar 

  • Benton J, Fuhrer J, Gimeno B, Skärby L, Palmer-Brown D, Ball G et al (2000) An international cooperative programme indicates the widespread occurrence of ozone injury on crops. Agric Ecosyst Environ 78(1):19–30

    CAS  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 212–222

    Google Scholar 

  • Brundtland GH, Ehrlich P, Goldemberg J, Hansen J, Lovins A, Likens G, Lovelock J, Manabe S, May B, Mooney H, Robert KH (2012) Environment and development challenges: the imperative to act. The Asahi Glass Foundation, Tokyo

    Google Scholar 

  • Bureau of Meteorology (2014) What is El Niño and what might it mean for Australia? Retrieved 29.10.2017, from Bureau of Meteorology. http://www.bom.gov.au/climate/updates/articles/a008-el-nino-and-australia.shtml

  • Cannon RJ (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Chang Biol 4(7):785–796

    Google Scholar 

  • Chander S, Husain M, Pal V (2016) Insect pest management in climate change. In: Chattopadhyay C, Prasad D (eds) Dynamics of crop protection and climate change. Studera Press, New Delhi, pp 115–130

    Google Scholar 

  • Ciceri D, Allanore A (2019) Local fertilizers to achieve food self-sufficiency in Africa. Sci Total Environ 648:669–680

    CAS  PubMed  Google Scholar 

  • Clements DR, Ditommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Google Scholar 

  • Drake V (1994) The influence of weather and climate on agriculturally important insects: an Australian perspective. Aust J Agric Res 45(3):487–509

    CAS  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    CAS  PubMed  Google Scholar 

  • Edwards EJ, Osborne CP, Stramberg CAE, Smith SA (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591

    Google Scholar 

  • Elias EH, Flynn R, Idowu OJ, Reyes J, Sanogo S, Schutte BJ, Smith R, Steele C, Sutherland C (2019) Crop vulnerability to weather and climate risk: analysis of interacting systems and adaptation efficacy for sustainable crop production. Sustainability 11(23):6619

    CAS  Google Scholar 

  • Fernando N, Florentine SK, Naiker M, Panozzoc J, Chauh BS (2019) Annual ryegrass (Lolium rigidum Gaud) competition altered wheat grain quality: A study under elevated atmospheric CO2 levels and drought conditions. Food Chemistry. 276: 285–290

    Google Scholar 

  • Fernández J, Frías MD, Cabos WD, Cofiño AS, Domínguez M, Fita L, Gaertner MA, García-Díez M, Gutiérrez JM, Jiménez-Guerrero P, Liguori G (2019) Consistency of climate change projections from multiple global and regional model intercomparison projects. Clim Dyn 52(1–2):1139–1156

    Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97(1):1–20. https://doi.org/10.1016/S0167-8809(03)00125-7

    Article  CAS  Google Scholar 

  • Gallagher RV, Englert DD, O’Donnell J, Wilson PD, Downey PO, Hughs L, Leishman MR (2013) The grass may not always be greener: projected reductions in climate suitability for exotic grasses under future climates in Australia. Biol Invasions 15:961–975

    Google Scholar 

  • Gaupp F, Hall J, Hochrainer-Stigler S, Dadson S (2020) Changing risks of simultaneous global breadbasket failure. Nat Clim Chang 10:54–57. https://doi.org/10.1038/s41558-019-0600-z

    Article  Google Scholar 

  • Getahun D (2020) Predictions of climate change on agricultural insect pests Vis-à-Vis food crop productivity: a critical review. Ethiop J Sci Sustain Dev 7(1):18–26

    Google Scholar 

  • Goverde M, Bazin A, Shykoff J, Erhardt A (1999) Influence of leaf chemistry of Lotus corniculatus (Fabaceae) on larval development of Polyommatus icarus (Lepidoptera, Lycaenidae): effects of elevated CO2 and plant genotype. Funct Ecol 13(6):801–810

    Google Scholar 

  • Guerrero Lara L, Pereira LM, Ravera F, Jiménez-Aceituno A (2019) Flipping the tortilla: social-ecological innovations and traditional ecological knowledge for more sustainable agri-food systems in Spain. Sustainability 11(5):1222

    Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643

    PubMed  PubMed Central  Google Scholar 

  • Hattersley PW (1983) The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57:113–128

    CAS  PubMed  Google Scholar 

  • Heagle A, Burns J, Fisher D, Miller J (2002) Effects of carbon dioxide enrichment on leaf chemistry and reproduction by twospotted spider mites (Acari: Tetranychidae) on white clover. Environ Entomol 31(4):594–601

    CAS  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22(3):534–543

    PubMed  Google Scholar 

  • Houghton J (2001) The science of global warming. Interdiscip Sci Rev 26(4):247–257. https://doi.org/10.1179/isr.2001.26.4.247

    Article  Google Scholar 

  • Hovenden MJ, Wills KE, Chaplin RC, Jacqueline K, Schoor V, Williams AL, Osanai Sanai, Y Newton PD (2008) Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Global Change Biology, 14, 1633–1641

    Google Scholar 

  • Hughes L (2003) Climate change in Australia: trends, projections and impacts. Austral Ecol 28

    Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Climate change 2013: the physical science basis. Contribution of working group 1 to the Fifth Assessment report of the intergovernmental panel on climate change retrieved from Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Joutei AB, Roy J, Van Impe G, Lebrun P (2000) Effect of elevated CO2 on the demography of a leaf-sucking mite feeding on bean. Oecologia 123(1):75–81

    Google Scholar 

  • Kimball B, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2enrichment. Adv Agron 77:293–368

    Google Scholar 

  • Kobiljski B, Dencic S (2001) Global climate change. Challenge for breeding and seed production of major field crops. J Genet Breed 55(1):83–90

    Google Scholar 

  • Kristinsson HG, Jörundsdóttir HÓ (2019) Food in the bioeconomy. Trends Food Sci Technol 84:4–6

    CAS  Google Scholar 

  • Kriticos DJ, Crossman ND, Ota N, Scott JK (2010) Climate change and invasive plants in South Australia. Report for the South Australian Department of Water, Land and Biodiversity Conservation. CSIRO Climate Adaptation Flagship, Canberra, Australia. 92pp.

    Google Scholar 

  • Krupa SV, Kickert RN, Jäger H-J (1998) Elevated ultraviolet (UV)-B radiation and agriculture. Springer

    Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876. https://doi.org/10.1093/jxb/erp096

    Article  CAS  PubMed  Google Scholar 

  • Leegood RC (2002) C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot 53(369):581–590

    CAS  PubMed  Google Scholar 

  • Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Jepsen JU, Kalinkat G, Neuvonen S, Niemelä P, Terblanche JS, Økland B (2020) Complex responses of global insect pests to climate warming. Front Ecol Environ. https://doi.org/10.1002/fee.2160

  • Lincoln DE, Fajer ED, Johnson RH (1993) Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol Evol 8(2):64–68

    CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA,Rogers A, Ort DR (2004) Rising atmospheric carbondioxide :plants FACE the future. Ann Rev Plant Biol 55, 591–628.

    Google Scholar 

  • Mahajan G, Singh S, Chauhan BS (2012) Impact of climate change on weeds in the rice-wheat cropping system. Curr Sci 102:1254–1255

    Google Scholar 

  • Mendelsohn R (2007) What causes crop failure? Clim Chang 81(1):61–70

    Google Scholar 

  • Menéndez R (2007) How are insects responding to global warming? Tijdschrift voor Entomologie 150:355–365

    Google Scholar 

  • Mpelasoka F, Hennessy K, Jones R, Bates B (2008) Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int J Climatol 28(10):1283–1292

    Google Scholar 

  • Najafi R, Kermani MRH (2017) Uncertainty modeling of statistical downscaling to assess climate change impacts on temperature and precipitation. Water Resour Manag 31(6):1843–1858

    Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    CAS  PubMed  Google Scholar 

  • Pareek A, Meena BM, Sharma S, Tetarwal ML, Kalyan RK, Meena BL (2017) Impact of climate change on insect pests and their management strategies. Available at: http://www.researchgate.net/publication/32847622

  • Patterson DT (1995) Weeds in a changing climate. Weed Sci 43(4):685–700

    CAS  Google Scholar 

  • Patterson DT, Flint EP (1990) Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. In: Impact of carbon dioxide, trace gases, and climate change on global agriculture(impactofcarbond), pp 83–110

    Google Scholar 

  • Pearcy RW, Ehleringer J (1984) Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ 7(1):1–13

    CAS  Google Scholar 

  • Pelini SL, Prior KM, Parker DJ, Dzurisin JD, Lindroth RL, Hellmann JJ (2009) Climate change and temporal and spatial mismatches in insect communities. In: Climate change. Elsevier, pp 215–231

    Google Scholar 

  • Philander SGH (1985) El Niño and La Niña. J Atmos Sci 42(23):2652–2662

    Google Scholar 

  • Prentice IC, Farquhar G, Fasham M, Goulden M, Heimann M, Jaramillo V et al (2001) The carbon cycle and atmospheric carbon dioxide. Cambridge University Press, Cambridge

    Google Scholar 

  • Rai B, Klein AM, Walter J (2018) Chronic dryness and wetness and especially pulsed drought threaten a generalist arthropod herbivore. Oecologia 188(3):931–943

    PubMed  Google Scholar 

  • Raulston J, Pair S, Loera J, Cabanillas H (1992) Prepupal and pupal parasitism of Helicoverpa zea and Spodoptera frugiperda (Lepidoptera: Noctuidae) by Steinernema sp. in cornfields in the lower Rio Grande Valley. J Econ Entomol 85(5):1666–1670

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Health 2:90–104

    Google Scholar 

  • Ruben R, Verhagen J, Plaisier C (2019) The challenge of food systems research: what difference does it make? Sustainability 11(1):171–185

    Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res 25(2):151–169

    Google Scholar 

  • Schleuning M, Neuschulz EL, Albrecht J, Bender IM, Bowler DE, Dehling DM, Fritz SA, Hof C, Mueller T, Nowak L, Sorensen MC (2020) Trait-based assessments of climate-change impacts on interacting species. Trends Ecol Evol

    Google Scholar 

  • Sharma HC, Dhillon MK (2020) Climate change effects on arthropod diversity and its implications for Pest management and sustainable crop production. Agroclimatol Linking Agric Climate 60: 595–619. Link to abstract: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronmonogr60.2016.0019

  • Sutherst RW (2000) Climate change and invasive species: a conceptual framework. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing World. Island Press, Washington

    Google Scholar 

  • Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J, Zalucki MP (2011) Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip Rev Clim Chang 2:220–237

    Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Chang Biol 14(3):565–575

    Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffman AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52(3):296–306

    Google Scholar 

  • Tramberend S, Fischer G, Bruckner M, van Velthuizen H (2019) Our common cropland: quantifying global agricultural land use from a consumption perspective. Ecol Econ 157:332–341

    Google Scholar 

  • UN DESA (2019) Growing at a slower pace, world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100. United Nations Department of Economic and Social Affairs (17 June 2019). Accessed 12 Feb 2020. https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  PubMed  Google Scholar 

  • Walther GR, Roques A, Hulme PE, Sykes MT, PyÅ¡ek P, Kühn I, Zobel M, Bacher S, Botta-Dukat Z, Bugmann H, Czucz B (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    PubMed  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Chang Biol 5:723–741

    Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob Chang Biol 5:857–867

    Google Scholar 

  • Warren R, Price J, Graham E, Forstenhaeusler N, VanDerWal J (2018) The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 C rather than 2 C. Science 360(6390):791–795

    CAS  PubMed  Google Scholar 

  • Watt AD, Leather SR (1988) The pine beauty in Scottish lodgepole pine plantations. In: Dynamics of forest insect populations. Springer, pp 243–266

    Google Scholar 

  • Wilson PD, Downey PO, Leishman M, Gallagher R, Hughes L, O’Donnell J (2009) Weeds in a warmer world: predicting the impact of climate change on Australia’s alien plant species using MaxEnt. Plant Prot Q 24:84–87

    Google Scholar 

  • Yan Y, Wang YC, Feng CC, Wan PHM, Chang KTT (2017) Potential distributional changes of invasive crop pest species associated with global climate change. Appl Geogr 82:83–92

    Google Scholar 

  • Ziska LH (2000) The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Glob Chang Biol 6(8):899–905. https://doi.org/10.1046/j.1365-2486.2000.00364.x

    Article  Google Scholar 

  • Ziska LH (2010) Elevated carbon dioxide alters chemical management of Canada thistle in no-till soybean. Field Crop Res 119:299–303

    Google Scholar 

  • Ziska LH (2016) The role of climate change and increasing atmospheric carbon dioxide on weed management: herbicide efficacy. Agric Ecosyst Environ 231:304–309

    CAS  Google Scholar 

  • Ziska LH, Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth Res 54:199–208

    CAS  Google Scholar 

  • Ziska LH, Teasdale JR (2000) Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Funct Plant Biol 27(2):159–166

    CAS  Google Scholar 

  • Ziska LH, Teasdale JR, Bunce JA (1999) Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci 608–615

    Google Scholar 

  • Ziska LH, Blumenthal DM, Franks SJ (2019) Understanding the nexus of rising CO 2, climate change, and evolution in weed biology. Invasive Plant Sci Manage 12(2):79–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagirath Singh Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Florentine, S., Chauhan, B.S., Jabran, K. (2020). Agriculture and Crop Protection; Its Global Importance and Relationship with Climate Change. In: Jabran, K., Florentine, S., Chauhan, B. (eds) Crop Protection Under Changing Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-46111-9_1

Download citation

Publish with us

Policies and ethics