Skip to main content

Was LUCA a Hyperthermophilic Prokaryote? The Impact-Bottleneck Hypothesis Revisited

  • Chapter
  • First Online:
Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth

Abstract

In the Origin of Species, Darwin wrote “The affinities of all the beings of the same class have sometimes been represented by a great tree. I believe this simile largely speaks the truth.” Modern comparative genomics has revealed that the intuition of Darwin was correct. A set of highly conserved genes and cellular functions indicate that all life on Earth is related by common ancestry. These genes were inherited from the last universal common ancestor or LUCA. The functions coded by these genes suggest that LUCA was a rather complex cell already endowed with a genetic code and a protein translation apparatus. One of the questions regarding the nature of LUCA is whether it was a hyperthermophile. Here, we review recent evidence derived from the molecular fossil record on the temperature preferences of LUCA. We suggest that current evidence on the nature of LUCA and its immediate predecessors are compatible with the impact-bottleneck hypothesis – the proposal that during the early evolution of life, a meteoritic impact eliminated all life on Earth except for prokaryotes capable of living at high temperatures. If our interpretation of the data is correct, it would indicate that early life was resilient to the rough environmental conditions of the Archean, a relevant result from the point of view of astrobiology because it would exemplify the persistence of life in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459(7245):419

    CAS  PubMed  Google Scholar 

  • Akanuma S (2017) Characterization of reconstructed ancestral proteins suggests a change in temperature of the ancient biosphere. Life 7(3):33

    PubMed Central  Google Scholar 

  • Akanuma S, Nakajima Y, Yokobori SI, Kimura M, Nemoto N, Mase T, Miyazono KI, Tanokura M, Yamagishi A (2013) Experimental evidence for the thermophilicity of ancestral life. Proc Natl Acad Sci 110(27):11067–11072

    CAS  PubMed  Google Scholar 

  • Akanuma S, Yokobori SI, Nakajima Y, Bessho M, Yamagishi A (2015) Robustness of predictions of extremely thermally stable proteins in ancient organisms. Evolution 69(11):2954–2962

    CAS  PubMed  Google Scholar 

  • Banerjee P, Qian YZ, Heger A, Haxton WC (2016) Evidence from stable isotopes and 10 Be for solar system formation triggered by a low-mass supernova. Nat Commun 7:13639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barion S, Franchi M, Gallori E, Di Giulio M (2007) The first lines of divergence in the bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales, and not the mesophilic Planctomycetales. Biosystems 87(1):13–19

    CAS  PubMed  Google Scholar 

  • Becerra A, Delaye L, Islas S, Lazcano A (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu Rev Ecol Evol Syst 38:361–379

    Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci 112(47):14518–14521

    CAS  PubMed  Google Scholar 

  • Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PC, Pisani D (2018) Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat Ecol Evol 2(10):1556

    PubMed  PubMed Central  Google Scholar 

  • Boussau B, Blanquart S, Necsulea A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperatures in the Archaean eon. Nature 456(7224):942

    CAS  PubMed  Google Scholar 

  • Boyer M, Madoui MA, Gimenez G, La Scola B, Raoult D (2010) Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One 5(12):e15530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier C, Philippe H (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417(6886):244

    CAS  PubMed  Google Scholar 

  • Catchpole R, Forterre P (2019) Positively twisted: the complex evolutionary history of reverse gyrase suggests a non-hyperthermophilic last universal common ancestor. bioRxiv:524215

    Google Scholar 

  • Colman DR, Jay ZJ, Inskeep WP, Jennings RD, Maas KR, Rusch DB, Takacs-Vesbach CD (2016) Novel, deep-branching heterotrophic bacterial populations recovered from thermal spring metagenomes. Front Microbiol 7:304

    PubMed  PubMed Central  Google Scholar 

  • Crawford I (2013) The Moon and the early Earth. Astron Geophys 54:1.31–1.34

    Google Scholar 

  • Di Giulio M (2000) The universal ancestor lived in a thermophilic or hyperthermophilic environment. J Theor Biol 203(3):203–213

    PubMed  Google Scholar 

  • Di Giulio M (2003) The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224(3):277–283

    PubMed  Google Scholar 

  • Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CT (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643):60

    CAS  PubMed  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284(5423):2124–2128

    CAS  PubMed  Google Scholar 

  • Forterre P (2002) A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet 18(5):236–237

    CAS  PubMed  Google Scholar 

  • Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717

    PubMed  PubMed Central  Google Scholar 

  • Fournier GP, Huang J, Peter Gogarten J (2009) Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Philos Trans R Soc B Biol Sci 364(1527):2229–2239

    CAS  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF (1999) Do proteins predate DNA? Science 286(5440):690–692

    CAS  PubMed  Google Scholar 

  • Galtier N, Lobry JR (1997) Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44(6):632–636

    CAS  PubMed  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A non-hyperthermophilic common ancestor to extant life forms. Science 283(5399):220–221

    CAS  PubMed  Google Scholar 

  • Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451(7179):704

    CAS  PubMed  Google Scholar 

  • Gaucher EA, Kratzer JT, Randall RN (2010) Deep phylogeny--how a tree can help characterize early life on Earth. Cold Spring Harb Perspect Biol 2(1):a002238

    PubMed  PubMed Central  Google Scholar 

  • Gogarten JP, Deamer D (2016) Is LUCA a thermophilic progenote? Nat Microbiol 1:16229

    CAS  PubMed  Google Scholar 

  • Gogarten-Boekels M, Hilario E, Gogarten JP (1995) The effects of heavy meteorite bombardment on the early evolution – the emergence of the three domains of life. Orig Life Evol Biosph 25(1–3):251–264

    CAS  PubMed  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Grimm RE, Marchi S (2018) Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability. Earth Planet Sci Lett 485:1–8

    CAS  Google Scholar 

  • Groussin M, Boussau B, Charles S, Blanquart S, Gouy M (2013) The molecular signal for the adaptation to cold temperature during early life on Earth. Biol Lett 9(5):20130608

    PubMed  PubMed Central  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13(3):407–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hastie AR, Fitton JG, Bromiley GD, Butler IB, Odling NW (2016) The origin of Earth’s first continents and the onset of plate tectonics. Geology 44(10):855–858

    CAS  Google Scholar 

  • Kikuchi A, Asai K (1984) Reverse gyrase – a topoisomerase which introduces positive superhelical turns into DNA. Nature 309(5970):677

    CAS  PubMed  Google Scholar 

  • Koonin EV, Wolf YI, Puigbò P (2009) The phylogenetic forest and the quest for the elusive tree of life. In: Cold Spring Harbor symposia on quantitative biology, vol 74. Harbor Laboratory Press, Cold Spring, pp 205–213

    Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci U S A 81(12):3786–3790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazcano A (2016) The RNA world: piecing together the historical development of a hypothesis. Mètode Sci Stud J Ann Rev 6:166–173

    Google Scholar 

  • Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85(6):793–798

    CAS  PubMed  Google Scholar 

  • Lowe DR, Byerly GR (2018) The terrestrial record of late heavy bombardment. New Astron Rev 81:39–61

    Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early Ocean and atmosphere. Nature 506(7488):307–315

    CAS  PubMed  Google Scholar 

  • Lyons TW, Fike DA, Zerkle A (2015) Emerging biogeochemical views of Earth’s ancient microbial worlds. Elements 11(6):415–421

    CAS  Google Scholar 

  • Maruyama S, Ebisuzaki T (2017) Origin of the Earth: a proposal of new model called ABEL. Geosci Front 8(2):253–274

    CAS  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CR (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384(6604):55

    CAS  PubMed  Google Scholar 

  • Moreira D, López-García P (2015) Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc B Biol Sci 370(1678):20140327

    Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409(6823):1083

    CAS  PubMed  Google Scholar 

  • Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537(7621):535

    CAS  PubMed  Google Scholar 

  • Page RDM, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Wiley-Blackwell, Oxford/Malden

    Google Scholar 

  • Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7(4):301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280(5722):483

    CAS  Google Scholar 

  • Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci U S A 112(21):6670–6675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431(7005):152

    CAS  PubMed  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in 3700-Ma Sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    CAS  PubMed  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14(3):225–IN6

    CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science 260(5108):640–646

    CAS  PubMed  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521(7551):173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18(2–3):149–158

    CAS  Google Scholar 

  • Sugitani K, Mimura K, Takeuchi M, Lepot K, Ito S, Javaux EJ (2015) Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13(6):507–521

    CAS  PubMed  Google Scholar 

  • Takami H, Noguchi H, Takaki Y, Uchiyama I, Toyoda A, Nishi S, Chee GJ, Arai W, Nunoura T, Itoh T, Hattori M (2012) A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem. PLoS One 7(1):e30559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarduno JA, Cottrell RD, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349(6247):521–524

    CAS  PubMed  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1(9):16116

    CAS  PubMed  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409(6817):175

    CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977a) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977b) The concept of cellular evolution. J Mol Evol 10(1):1–6

    CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeldovich KB, Berezovsky IN, Shakhnovich EI (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3(1):e5

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank María González for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Delaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales, G.P., Delaye, L. (2020). Was LUCA a Hyperthermophilic Prokaryote? The Impact-Bottleneck Hypothesis Revisited. In: Souza, V., Segura, A., Foster, J. (eds) Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-030-46087-7_3

Download citation

Publish with us

Policies and ethics