Skip to main content

Abstract

Astrobiology is an inherently multidisciplinary field that is focused on the origins, evolution, and distribution of life throughout the Universe. The question of whether life extends beyond Earth was a question that used to be answered mostly based on human imagination reflecting our passions and fears. Philosophers, scientists, and even politicians, such as Winston Churchill, have argued about the existence (or nonexistence) of alien life in the Universe. For scientists, this ambitious endeavor begins with Earth, as it represents the only known example of life in the Universe. Understanding Earth is, therefore, the first step to understanding the requirements for life to emerge and make a habitable world. In this book, with the collaboration of scientists from many disciplines, we gather the knowledge about the requirements, diversification, and characteristics of terrestrial life, as well as the characteristics of potentially habitable worlds in our Solar System and beyond. In this chapter, we describe the objectives and strategies of this dynamic field that has emerged with a multidisciplinary approach, leading us to one of the most exciting goals: the search for extraterrestrial life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Isotopes are atoms of the same element that have different atomic masses due to the number of neutrons in their nuclei. For example, carbon has two stable isotopes 12C with six neutrons and 13C with seven neutrons.

  2. 2.

    An athalassohaline lake is a saline lake not of marine origin, but from evaporation of freshwater in a system dominated by calcium, magnesium, and sulfate (as opposed to sodium and chloride in the ocean).

References

  • Alvarado A et al (2014) Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic dige–sters. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00597

  • Amils R et al (2007) Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planetary and Space Science 55(3):370–381

    Google Scholar 

  • Anglada-Escudé G et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437

    PubMed  Google Scholar 

  • Baalke R Mars Meteorite Home Page (JPL). https://www2.jpl.nasa.gov/snc/. Accessed 20 Oct 2019

  • Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    CAS  PubMed  Google Scholar 

  • Barnes R et al. (2018) The habitability of Proxima Centauri b I: evolutionary scenarios. ArXiv: 160806919 [astro-ph]

    Google Scholar 

  • Bar-On YM et al (2018) The biomass distribution on earth. Proc Natl Acad Sci 115:6506

    CAS  PubMed  Google Scholar 

  • Benner SA (2010) Defining life. Astrobiology 10(10):1021–1030

    PubMed  PubMed Central  Google Scholar 

  • Bixel A, Apai D (2017) Probabilistic constraints on the mass and composition of Proxima b. Astrophys J 836:L31

    Google Scholar 

  • Bouquet A et al (2015) Possible evidence for a methane source in Enceladus’ ocean. Geophys Res Lett 42:1334–1339

    CAS  Google Scholar 

  • Brock TD (2012) Thermophilic microorganisms and life at high temperatures. Springer Science & Business Media

    Google Scholar 

  • Brown ME, Hand KP (2013) Salts and radiation products on the surface of Europa. Astron J 145:110

    Google Scholar 

  • Carr MH, Bell JF (2014) Chapter 17 - Mars: surface and interior. In: Spohn T et al (eds) Encyclopedia of the solar system, 3rd edn. Elsevier, Boston, pp 359–377

    Google Scholar 

  • Catling DC et al (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res Planets 115

    Google Scholar 

  • Catling DC et al (2018) Exoplanet biosignatures: a framework for their assessment. Astrobiology 18:709–738

    PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292

    CAS  PubMed  Google Scholar 

  • Chyba CF, Phillips CB (2002) Europa as an abode of life. Orig Life Evol Biosph 32:47–67

    PubMed  Google Scholar 

  • Cleland CE (2012) Life without definitions. Synthese 185(1):125–144

    Google Scholar 

  • Cocconi G, Morrison P (1959) Searching for interstellar communications. Nature 184:844

    Google Scholar 

  • Cockell CS (2001) “Astrobiology” and the ethics of new science. Interdiscip Sci Rev 26:90–96

    Google Scholar 

  • Coustenis A (2014) Chapter 38 - titan. In: Spohn T et al (eds) Encyclopedia of the solar system, 3rd edn. Elsevier, Boston, pp 831–849

    Google Scholar 

  • Deamer D, Damer B (2017) Can life begin on Enceladus? A perspective from hydrothermal chemistry. Astrobiology 17:834–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domagal-Goldman SD, Segura A (2013) Exoplanet climates. In: Mackwell SJ et al. (eds) comparative climatology of terrestrial planets. Pp 121–135

    Google Scholar 

  • Domagal-Goldman SD et al (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11:419–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • ESA The ExoMars programme 2016-2020. In: Robot. Explor. Mars. https://exploration.esa.int/web/mars/-/46048-programme-overview. Accessed 20 Oct 2019

  • Eugster O et al (1997) Ejection times of Martian meteorites. Geochim Cosmochim Acta 61:2749–2757

    CAS  Google Scholar 

  • Fujii Y et al (2018) Exoplanet biosignatures: observational prospects. Astrobiology 18:739–778

    PubMed  PubMed Central  Google Scholar 

  • Golombek MP, McSween HY (2014) Chapter 19 - Mars: landing site geology, mineralogy, and geochemistry. In: Spohn T et al (eds) Encyclopedia of the solar system, 3rd edn. Elsevier, Boston, pp 397–420

    Google Scholar 

  • Hand E (2008) Perchlorate found on Mars. Nature. https://doi.org/10.1038/news.2008.1016

  • Hanley J et al (2014) Reflectance spectra of hydrated chlorine salts: the effect of temperature with implications for Europa. J Geophys Res Planets 119:2370–2377

    CAS  Google Scholar 

  • Hays L et al. (2015) NASA astrobiology strategy

    Google Scholar 

  • Hermida M (2016) Life on earth is an individual. Theory Biosci 135(1–2):37–44

    CAS  PubMed  Google Scholar 

  • Hubbart SG (2015) What is astrobiology? In: NASA. http://www.nasa.gov/feature/what-is-astrobiology. Accessed 5 Oct 2019

  • INEGI (2015) Encuesta sobre la Percepción Pública de la Ciencia y la Tecnología (ENPECYT) 2015. https://www.inegi.org.mx/programas/enpecyt/2015/. Accessed 5 Oct 2019

  • Jakosky BM et al (2007) Mars. In: Sullivan WI, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, UK, pp 357–387

    Google Scholar 

  • Jenkins JS et al (2019) Proxima Centauri b is not a transiting exoplanet. Mon Not R Astron Soc 487:268–274

    CAS  Google Scholar 

  • Kiang NY et al (2018) Exoplanet biosignatures: at the Dawn of a new era of planetary observations. Astrobiology 18:619–629

    PubMed  PubMed Central  Google Scholar 

  • Kopparapu RK et al (2013) Habitable zones around Main-sequence stars: new estimates. Astrophys J 765:131

    Google Scholar 

  • Kuiper GP (1944) Titan: a Satellite with an Atmosphere. Astrophys J 100:378

    Google Scholar 

  • Lapen TJ et al (2010) A younger age for ALH84001 and its geochemical link to Shergottite sources in Mars. Science 328:347–351

    CAS  PubMed  Google Scholar 

  • Lowell P (1895) Mars. The canals I. Pop Astron 2:255

    Google Scholar 

  • Lozada-Chávez I et al (2009) Metanogenic diversity through mcrA gene in hypersaline conditions. In: Origins of life and evolution of biospheres, vol 39, pp 382–383

    Google Scholar 

  • Lozada-Chávez I et al (2011) “Hypothesis for the modern RNA world”: a pervasive non-coding RNA-based genetic regulation is a prerequisite for the emergence of multicellular complexity. Orig Life Evol Biospheres 41:587–607

    Google Scholar 

  • Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15:119–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mariscal C, Doolittle WF (2018) Life and life only: a radical alternative to life definitionism. Synthese:1–15

    Google Scholar 

  • Mariscal C, Fleming L (2018) Why we should care about universal biology. Biol Theory 13(2):121–130

    Google Scholar 

  • Marlow JJ et al (2008) Mars on earth: soil analogues for future Mars missions. Astron Geophys 49:2.20–2.23

    Google Scholar 

  • Marlow JJ et al (2011) Organic host analogues and the search for life on Mars. Int J Astrobiol 10:31–44

    CAS  Google Scholar 

  • Martin W et al (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    CAS  PubMed  Google Scholar 

  • Mastascusa V et al (2014) Extremophiles survival to simulated space conditions: an astrobiology model study. Orig Life Evol Biospheres 44:231–237

    CAS  Google Scholar 

  • McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J Geophys Res Planets 104:30729–30742

    CAS  Google Scholar 

  • McKay DS et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930

    CAS  PubMed  Google Scholar 

  • McKay CP et al (2008) The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8:909–919

    CAS  PubMed  Google Scholar 

  • Meadows VS (2017) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17:1022–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meadows VS et al (2018a) The habitability of Proxima Centauri b: environmental states and observational discriminants. Astrobiology 18:133–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meadows VS et al (2018b) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18:630–662

    PubMed  PubMed Central  Google Scholar 

  • Merino N et al (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10:780

    PubMed  PubMed Central  Google Scholar 

  • Mix LJ (2015) Defending definitions of life. Astrobiology 15(1):15–19

    PubMed  Google Scholar 

  • Montoya L et al (2011) The sulfate-rich and extreme saline sediment of the ephemeral Tirez lagoon: a biotope for Acetoclastic sulfate-reducing bacteria and Hydrogenotrophic methanogenic archaea. Int J Microbiol 2011:1–22

    Google Scholar 

  • NASA (2012) Martian Meteorite Compendium. In: Astromaterials Acquis. Curation Off. https://curator.jsc.nasa.gov/antmet/mmc/introduction.cfm. Accessed 20 Oct 2019

  • NASA (2018) NASA Astrobiology Institute. https://nai.nasa.gov/about/. Accessed 5 Oct 2019

  • NASA Galileo Mission. In: NASA Sol Syst Explor https://solarsystem.nasa.gov/missions/galileo/overview. Accessed 20 Oct 2019a

  • NASA Mars global surveyor Mission. In: NASA’s Mars Explor. Program. https://mars.nasa.gov/mars-exploration/missions/mars-global-surveyor. Accessed 20 Oct 2019b

  • NASA Pathfinder Mission. In: NASA’s Mars Explor Program https://mars.nasa.gov/mars-exploration/missions/pathfinder. Accessed 20 Oct 2019c

  • NASA Phoenix Mission. In: NASA’s Mars Explor. Program. https://mars.nasa.gov/mars-exploration/missions/phoenix. Accessed 19 Oct 2019d

  • NASA Viking missions. In: NASA’s Mars Explor. Program. https://mars.nasa.gov/mars-exploration/missions/viking-1-2. Accessed 19 Oct 2019e

  • NASA’s Mars Exploration Program. In: NASA’s Mars Explor. Program. https://mars.nasa.gov/. Accessed 20 Oct 2019

  • Negron-Mendoza A, Ramos-Bernal S (2005) The role of clays in the origin of life. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Springer, Netherlands, pp 181–194

    Google Scholar 

  • Norman LH, Fortes AD (2011) Is there life on … titan? Astron Geophys 52:1.39–1.42

    Google Scholar 

  • Nutman AP et al (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538

    CAS  PubMed  Google Scholar 

  • Ojha L et al (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8:829–832

    CAS  Google Scholar 

  • Orosei R et al (2018) Radar evidence of subglacial liquid water on Mars. Science 361:490–493

    CAS  PubMed  Google Scholar 

  • Phillips CB, Pappalardo RT (2014) Europa clipper Mission concept: exploring Jupiter’s ocean moon. EOS Trans Am Geophys Union 95:165–167

    Google Scholar 

  • Planetary Habitability Laboratory (2019) The Habitable Exoplanets Catalog. http://phl.upr.edu/projects/habitable-exoplanets-catalog. Accessed 1 Nov 2019

  • Porco CC et al (2005) Imaging of Titan from the Cassini spacecraft. Nature 434(7030):159–168

    Google Scholar 

  • Potter EG et al (2009) Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system. Astrobiology 9:383–390

    CAS  PubMed  Google Scholar 

  • Preston LJ, Dartnell LR (2014) Planetary habitability: lessons learned from terrestrial analogues. Int J Astrobiol 13:81–98

    Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci 101:4631–4636

    CAS  PubMed  Google Scholar 

  • Priscu JC et al (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    CAS  PubMed  Google Scholar 

  • Prockter LM, Pappalardo RT (2007) Chapter 23 - Europa. In: McFadden L-A et al (eds) Encyclopedia of the solar system, 2nd edn. Academic Press, San Diego, pp 431–448

    Google Scholar 

  • Quinn RC et al (2013) Perchlorate radiolysis on Mars and the origin of Martian soil reactivity. Astrobiology 13:515–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson TD et al (2011) Earth as an extrasolar planet: earth model validation using EPOXI earth observations. Astrobiology 11:393–408

    PubMed  PubMed Central  Google Scholar 

  • Sagan C, Fox P (1975) The canals of Mars: an assessment after mariner 9. Icarus 25:602–612

    Google Scholar 

  • Salisbury FB (1962) Martian biology: accumulating evidence favors the theory of life on Mars, but we can expect surprises. Science 136:17–26

    CAS  PubMed  Google Scholar 

  • Schwieterman EW et al (2018) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18:663–708

    PubMed  PubMed Central  Google Scholar 

  • Seager S (2018) The search for habitable planets with biosignature gases framed by a ‘Biosignature Drake Equation.’. Int J Astrobiol 17:294–302

    Google Scholar 

  • Seager S et al (2012) An astrophysical view of earth-based metabolic biosignature gases. Astrobiology 12:61–82

    CAS  PubMed  Google Scholar 

  • Seager S et al (2013a) A biomass-based model to estimate the plausibility of exoplanet biosignature gases. Astrophys J 775:104

    Google Scholar 

  • Seager S et al (2013b) Biosignature gases in H2-dominated atmospheres on rocky exoplanets. Astrophys J 777:95

    Google Scholar 

  • SETI Institute (2019) Drake Equation. https://www.seti.org/drake-equation-index. Accessed 19 Dec 2019

  • Siegel SM et al (1963) Martian biology: the Experimentalist’s approach. Nature 197:329–331

    Google Scholar 

  • Stevenson J et al (2015) Membrane alternatives in worlds without oxygen: creation of an azotosome. Sci Adv 1:e1400067

    PubMed  PubMed Central  Google Scholar 

  • Sullivan W, Carney D (2007) History of astrobiological ideas. In: Sullivan WI, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, UK, pp 9–45

    Google Scholar 

  • Summons RE, Walter MR (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am J Sci 290(A):212–244

    Google Scholar 

  • Sumner DY (2001) Microbial influences on local carbon isotopic ratios and their preservation in carbonate. Astrobiology 1:57–70

    CAS  PubMed  Google Scholar 

  • Tarter J (2001) The search for extraterrestrial intelligence (SETI). Annu Rev Astron Astrophys 39:511–548

    Google Scholar 

  • Tarter JC (2007) Searching for extraterrestrial intelligence. In: Sullivan WI, Baross J (eds) Planets and life: the emerging science astrobiology. Cambridge University Press, Cambridge, UK, pp 513–536

    Google Scholar 

  • Tashiro T et al (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549(7673):516–518

    PubMed  Google Scholar 

  • Taubner R-S et al (2018) Biological methane production under putative Enceladus-like conditions. Nat Commun 9:1–11

    CAS  Google Scholar 

  • Taylor FW, Hunten DM (2014) Chapter 14 - Venus: atmosphere. In: Spohn T et al (eds) Encyclopedia of the solar system, 3rd edn. Elsevier, Boston, pp 305–322

    Google Scholar 

  • Taylor FW et al (2018) Venus: the atmosphere, climate, surface, interior and near-space environment of an earth-like planet. Space Sci Rev 214:35

    Google Scholar 

  • Trifonov EN (2011) Vocabulary of definitions of life suggests a definition. J Biomol Struct Dynamics 29(2):259–266

    CAS  Google Scholar 

  • Troutman PA et al (2003) Revolutionary concepts for human outer planet exploration (HOPE). AIP Conf Proc 654:821–828

    Google Scholar 

  • Trumbo SK et al (2019) Sodium chloride on the surface of Europa. Sci Adv 5(6):eaaw7123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsokolov SA (2009) Why is the definition of life so elusive? Epistemological considerations. Astrobiology 9:401–412

    PubMed  Google Scholar 

  • Tsou P et al (2012) LIFE: LIFE investigation for EnceladusA sample return Mission concept in search for evidence of LIFE. Astrobiology 12:730–742

    CAS  PubMed  Google Scholar 

  • Walker SI et al (2018) Exoplanet Biosignatures: Future Directions. Astrobiology 18:779–824

    PubMed  PubMed Central  Google Scholar 

  • Watanabe T et al (2016) Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Sci Rep 6:1–9

    CAS  Google Scholar 

  • Weiss MC et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:1–8

    Google Scholar 

  • Whiting L (1906) There is life on the planet Mars N Y Times 1

    Google Scholar 

  • YouGov (2015) You are not alone: most people believe that aliens exist. https://yougov.co.uk/topics/lifestyle/articles-reports/2015/09/24/you-are-not-alone-most-people-believe-aliens-exist. Accessed 5 Oct 2019

  • Young LA et al (1997) Detection of gaseous methane on Pluto. Icarus 127:258–262

    CAS  Google Scholar 

  • Zheng Y et al (2018) A pathway for biological methane production using bacterial iron-only nitro–genase. Nat Microbiol 3:281–286

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antígona Segura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Segura, A., Ramírez Jiménez, S.I., Lozada-Chávez, I. (2020). What Is Astrobiology?. In: Souza, V., Segura, A., Foster, J. (eds) Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-030-46087-7_1

Download citation

Publish with us

Policies and ethics