Skip to main content

The Ruminant: Life History and Digestive Physiology of a Symbiotic Animal

  • Chapter
  • First Online:
Sustainable and Environmentally Friendly Dairy Farms

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Ruminants are the main pillar of our animal stock, and were crucial to the process of human Neolithization, as the first species to be domesticated for husbandry. They are an important element of the world’s economy and cultural heritage, and also play a significant role in promoting biodiversity within the habitats they occupy. They have evolved a digestive system that relies entirely on a symbiotic relationship with micro-organisms, most of their energy comes from the end-products of microbial digestion, enabling ruminants to make use of the plant cell wall, which is something that no other vertebrate can do to such an extent. This, together with an efficient mechanism of nitrogen recycling, converts the ruminant into an efficient animal able to subsist on plant fibre, one of the most abundant organic resources in nature. Ruminants also have dental and behavioural (rumination) adaptations to comminute food and so facilitate the activity of ruminal micro-organisms, and very long intestines and caeca to increase the time food is exposed to enzymatic digestion and absorption. Brief descriptions of food energy losses and the main metabolic paths of the transformation of dietary carbohydrates, proteins and lipids are given here. Food digestion, mainly of fibre, comes at the cost of gas emissions, especially methane, which reduce food use efficiency and contribute to global greenhouse gas emissions. The purpose of this chapter is to provide a brief overview of the ruminant animal, its taxonomic diversity and life history traits, the relevance of domestication, and its adaptations to the use of plant-based diets and digestive physiology, in order to gain a better understanding of the relationships between diet and gas and solid emissions. We focus on the ruminant over monogastric species for two reasons: (i) the greater biomass contribution of ruminants to livestock, and (ii) the very complex ruminant digestive system, which includes both foregut and hindgut enteric fermentation, while monogastric species have only hindgut fermentation. Comments on dietary components and their metabolic transformations refer to roughage natural diets, rather than concentrate or supplemented diets. Although in many cases these are equivalent, we remark the importance of roughage diets because they have been the driver of the evolutionary adaptation of the ruminant symbiotic digestive system, and because of the importance of the use of roughage resources in reducing the carbon footprint of these species as compared to concentrate feeds, the production of which is high in carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AFRC, Energy and protein requirements of ruminants. Agricultural and Food Research Council (CAB International, Wallingford, Oxon, UK, 1993)

    Google Scholar 

  • G.L. Badam, Holocene faunal material from India with special reference to domesticated animals, in Animals and Archaeology 3. Early Herders and Their Flocks. (BAR International, 1984), pp. 339–353

    Google Scholar 

  • R.E. Barry, Length and absorptive surface area apportionment of segments of the hindgut for eight species of small mammals. J. Mammal. 58, 419–420 (1977)

    Article  Google Scholar 

  • R.H.V. Bell, The Use of the Herbaceous Layer by Grazing Ungulates in the Serengeti National Park, Tanzania. (University of Manchester, 1969)

    Google Scholar 

  • F.M. Byers, G.T. Schelling, Lipids in ruminant nutrition, in The Ruminant Animal. Digestive Physiology and Nutrition, ed. by D.C. Church (Department of Animal Science, Oregon State University, Corvallis, OR, USA, 1988), pp. 298–312

    Google Scholar 

  • R.L. Carroll, Vertebrate Paleontology and Evolution, 1st Edn. ed. W. H. Freeman. (Company, New York, NY, 1990)

    Google Scholar 

  • D.C. Church, The Ruminant Animal. Digestive Physiology and Nutrition (Prentice Hall, Upper Saddle River, NJ, USA, 1988)

    Google Scholar 

  • M. Clauss, I. Hume, J. Hummel, Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4, 979–992. (2010). https://doi.org/10.1017/S1751731110000388

    Article  CAS  Google Scholar 

  • M. Clauss, P. Steuer, D.W.H. Müller, D. Codron, J. Hummel, Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714 (2013)

    Article  CAS  Google Scholar 

  • J. Clutton-Brock, A Natural History of Domesticated Mammals. (Cambridge University Press , British Museum (Natural History), Cambridge , London , 1987)

    Google Scholar 

  • J.E. Cramp, R.P. Evershed, M. Lavento, P. Halinen, K. Mannermaa, M. Oinonen, J. Kettunen, M. Perola, P. Onkamo, V. Heyd, Neolithic dairy farming at the extreme of agriculture in northern Europe. Proc. R. Soc. B Biol. Sci. 281, 20140819 (2014). https://doi.org/10.1098/rspb.2014.0819

    Article  Google Scholar 

  • H. Dove, R.W. Mayes, Plant wax components: a new approach to estimating intake and diet composition in herbivores. J. Nutr. 126, 13–26 (1996)

    Article  CAS  Google Scholar 

  • H. Dove, J.A. Milne, Digesta flow and rumen microbial protein production in ewes grazing perennial ryegrass. Aust. J. Agric. Res. 45, 1229–1245 (1994). https://doi.org/10.1071/ar9941229

    Article  Google Scholar 

  • A.J. Duncan, D.P. Poppi, nutritional ecology of grazing and browsing ruminants, in The Ecology of Browsing and Grazing, Ecological Studies. (Springer, Berlin, Heidelberg, 2008), pp. 89–116. https://doi.org/10.1007/978-3-540-72422-3_4

    Google Scholar 

  • N. Edouard, G. Fleurance, W. Martin-Rosset, P. Duncan, J.P. Dulphy, S. Grange, R. Baumont, H. Dubroeucq, F.J. Pérez-Barbería, I.J. Gordon, Voluntary intake and digestibility in horses: effect of forage quality with emphasis on individual variability. Animal 2, 1526–1533, (2008)

    Article  CAS  Google Scholar 

  • FAOSTAT, Food and Agriculture Organization of the United Nations. FAOSTAT Database. (FAO, Roma, Italy, 2019)

    Google Scholar 

  • M. Felius, Cattle Breeds: An Encyclopedia. (Trafalgar Square Publishing, 2007)

    Google Scholar 

  • C.L. Ferrel, Energy metabolism, in ed. by D.C. Church, The Ruminant Animal. Digestive Physiology and Nutrition. (Department of Animal Science, Oregon State University, Corvallis, OR, USA, 1988), pp. 250–268

    Google Scholar 

  • M. Fortelius, Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zool. Fenn. 180, 1–76 (1985)

    Google Scholar 

  • A.W. Gentry, The ruminant radiation, Antelopes, Deer, and Relatives: Fossil Record, Behavioral Ecology, Systematics, and Conservation (Yale University Press, New Haven, CT, 2000), pp. 11–25

    Google Scholar 

  • C. Gerling, T. Doppler, V. Heyd, C. Knipper, T. Kuhn, M.F. Lehmann, A.W.G. Pike, J. Schibler, High-resolution isotopic evidence of specialised cattle herding in the European neolithic. PLoS ONE 12, e0180164 (2017). https://doi.org/10.1371/journal.pone.0180164

    Article  CAS  Google Scholar 

  • I. Gordon, A. Illius, Incisor arcade structure and diet selection in ruminants. Funct. Ecol. 2, 15–22 (1988). https://doi.org/10.2307/2389455

    Article  Google Scholar 

  • I.J. Gordon, A.W. Illius, J.D. Milne, Sources of variation in the foraging efficiency of grazing ruminants. Funct. Ecol. 10, 219–226 (1996). https://doi.org/10.2307/2389846

    Article  Google Scholar 

  • I.J. Gordon, H.H.T. Prins (eds.), The Ecology of Browsing and Grazing, Ecological Studies (Springer-Verlag, Berlin Heidelberg, 2008)

    Google Scholar 

  • C. Grigson, The craniology and relationships of four species of Bos,: 4. The Relationship between Bos primigenius Boj. and B. taurus L. and its implications for the Phylogeny of the Domestic Breeds. J. Archaeol. Sci. 5, 123–152 (1978). https://doi.org/10.1016/0305-4403(78)90028-6

    Article  Google Scholar 

  • T.J. Hackmann, J.N. Spain, Invited review: Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93, 1320–1334 (2010). https://doi.org/10.3168/jds.2009-2071

    Article  CAS  Google Scholar 

  • R.R. Hofmann, Evolutionary steps of ecophysiological adaptation and diversification of ruminants—a comparative view of their digestive-system. Oecologia 78, 443–457 (1989)

    Article  CAS  Google Scholar 

  • R.R. Hofmann, Anatomy of the gastro-intestinal tract, in ed. by D.C. Church, The Ruminant Animal. Digestive Physiology and Nutrition. (Prentice Hall, Englewood Cliff, New Yersey, 1988), pp. 14–43

    Google Scholar 

  • R.R. Hofmann, Digestive physiology of the Deer: Their morphophysiological specialisation and adaptation. R. Soc. N. Z. Bull. 393–407 (1985)

    Google Scholar 

  • R.R. Hofmann, D.R.M. Stewart, Grazer or browser: a classification based on the stomach-structure and feeding habitats of East African ruminants. Mammalia 36, 226–240 (1972)

    Article  Google Scholar 

  • W.L. Hurley, P.K. Theil, Perspectives on immunoglobulins in colostrum and milk. Nutrients 3, 442–474 (2011). https://doi.org/10.3390/nu3040442

    Article  CAS  Google Scholar 

  • C.M. Janis, Evolution of horns in ungulates: ecology and paleoecology. Biol. Rev. 57, 261–318 (1982).

    Article  Google Scholar 

  • C.M. Janis, An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference, in ed. by D.E. Russell, J.P. Santoro, D. Sigogneau-Russel, Proceedings of the VIIth International Symposium on Dental Morphology (1988), pp. 367–387

    Google Scholar 

  • C.M. Janis, Tragulids as living fossils, Living Fossils (Springer-Verlag, New York, NY, 1984), pp. 87–94

    Chapter  Google Scholar 

  • C.M. Janis, D. Ehrhardt, Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zool. J. Linn. Soc. 92, 267–284 (1988)

    Article  Google Scholar 

  • C.M. Janis, E. Manning, Dromomerycidae, in Evolution of Tertiary Mammals of North America. Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. (Cambridge University Press, Cambridge, UK, 1998), pp. 477–490

    Google Scholar 

  • G. Janssens-Maenhout, M. Crippa, D. Guizzardi, M. Muntean, E. Schaaf, F. Dentener, P. Bergamaschi, V. Pagliari, J.G.J. Olivier, J.A.H.W. Peters, J.A. Aardenne, S. van, Monni, U. Doering, A.M.R. Petrescu, EDGAR v4.3.2 global atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data Discuss. 1–55. (2017). https://doi.org/10.5194/essd-2017-79

  • K.A. Johnson, D.E. Johnson, Methane emissions from cattle. J. Anim. Sci. 73, 2483–2492 (1995). https://doi.org/10.2527/1995.7382483x

    Article  CAS  Google Scholar 

  • W.H. Karasov, A.E. Douglas, Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013). https://doi.org/10.1002/cphy.c110054

    Article  Google Scholar 

  • H. Lapierre, G.E. Lobley, Nitrogen recycling in the ruminant: A review. J. Dairy Sci. 84, E223–E236 (2001). https://doi.org/10.3168/jds.S0022-0302(01)70222-6

    Article  Google Scholar 

  • G. Larson, J. Burger, A population genetics view of animal domestication. Trends Genet. 29, 197–205 (2013). https://doi.org/10.1016/j.tig.2013.01.003

    Article  CAS  Google Scholar 

  • R.S. Luna, A. Duarte, F.W. Weckerly, Rumen–reticulum characteristics, scaling relationships, and ontogeny in white-tailed deer (Odocoileus virginianus). Can. J. Zool. 90, 1351–1358 (2012). https://doi.org/10.1139/cjz-2012-0122

    Article  CAS  Google Scholar 

  • S.J. McNaughton, Grazing lawns – animals in herds, plant form, and coevolution. Am. Nat. 124, 863–886 (1984).

    Article  Google Scholar 

  • K. Meyer, J. Hummel, M. Clauss, The relationship between forage cell wall content and voluntary food intake in mammalian herbivores. Mammal Rev. 40, 221–245 (2010)

    Google Scholar 

  • National Research Council, Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. (2006). https://doi.org/10.17226/11654

  • R.M. Nowak, Walker’s mammals of the world (The Johns Hopkins University Press, Baltimore, 1999)

    Google Scholar 

  • N.F. Owens, A.L. Goetsch, Ruminal fermentation, in The Ruminant Animal. Digestive Physiology and Nutrition. (Department of Animal Science, Oregon State University, Corvallis, OR 97330, USA, 1988), pp. 145–171

    Google Scholar 

  • N.F. Owens, R. Zinn, Protein metabolism of ruminant animals, in ed. by D.C. Church, The Ruminant Animal. Digestive Physiology and Nutrition. (Department of Animal Science, Oregon State University, Corvallis, OR, USA, 1988), pp. 227–249

    Google Scholar 

  • F.J. Pérez-Barbería, Scaling methane emissions in ruminants and global estimates in wild populations. Sci. Total Environ. 579, 1572–1580 (2017). https://doi.org/10.1016/j.scitotenv.2016.11.175

    Article  CAS  Google Scholar 

  • F.J. Pérez-Barbería, D.A. Elston, I.J. Gordon, A.W. Illius, The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc. R. Soc. B-Biol. Sci. 271, 1081–1090 (2004)

    Article  Google Scholar 

  • F.J. Pérez-Barbería, I.J. Gordon, The functional relationship between feeding type and jaw and cranial morphology in ungulates. Oecologia 118, 157–165 (1999)

    Article  Google Scholar 

  • F.J. Pérez-Barbería, I.J. Gordon, Factors affecting food comminution during chewing in ruminants: a review. Biol. J. Linn. Soc. 63, 233–256 (1998a). https://doi.org/10.1111/j.1095-8312.1998.tb01516.x

    Article  Google Scholar 

  • F.J. Pérez-Barbería, I.J. Gordon, The influence of molar occlusal surface area on the voluntary intake, digestion, chewing behaviour and diet selection of red deer (_Cervus elaphus_). J. Zool. 245, 307–316 (1998b). https://doi.org/10.1111/j.1469-7998.1998.tb00106.x

    Article  Google Scholar 

  • F.J. Pérez-Barbería, I.J. Gordon, A.W. Illius, Phylogenetic analysis of stomach adaptation in digestive strategies in African ruminants. Oecologia 129, 498–508 (2001). https://doi.org/10.1007/s004420100768

    Article  Google Scholar 

  • F.J. Pérez-Barbería, I.J. Gordon, M. Pagel, The origins of sexual dimorphism in body size in ungulates. Evolution 56, 1276–1285 (2002)

    Article  Google Scholar 

  • F.J. Pérez-Barbería, R.W. Mayes, J. Giráldez, D. Sánchez-Pérez, Ericaceous species reduce methane emissions in sheep and red deer: Respiration chamber measurements and predictions at the scale of European heathlands. Scie. Total Environ. 714, 136738 (2020).

    Article  Google Scholar 

  • V. Porter, L. Alderson, S.J.G. Hall, D.P. Sponenberg, Mason’s world encyclopedia of livestock breeds and breeding, vol. 2. (CABI, 2016)

    Google Scholar 

  • R.A. Prins, R.E. Hungate, E.R. Prast, Function of the omasum in several ruminant species. Comp. Biochem. Physiol. Physiol. 43, 155–163 (1972). https://doi.org/10.1016/0300-9629(72)90477-X

    Article  CAS  Google Scholar 

  • C.T. Robbins, Wildlife feeding and nutrition (Academic Press, San Diego, 1993)

    Google Scholar 

  • C.T. Robbins, A.E. Hagerman, P.J. Austin, C. Mcarthur, T.A. Hanley, Variation in mammalian physiological-responses to a condensed tannin and its ecological implications. J. Mammal. 72, 480–486 (1991)

    Article  Google Scholar 

  • A. Scheu, A. Powell, R. Bollongino, J.-D. Vigne, A. Tresset, C. Çakırlar, N. Benecke, J. Burger, The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genet. 16, 54 (2015). https://doi.org/10.1186/s12863-015-0203-2

    Article  Google Scholar 

  • R.M. Sibly, K.A. Monk, I.K. Johnson, R.C. Trout, Seasonal variation in gut morphology in wild rabbits (Oryctolagus cuniculus). J. Zool. 221, 605–619 (1990). https://doi.org/10.1111/j.1469-7998.1990.tb04020.x

    Article  Google Scholar 

  • N. Solounias, M. Fortelius, P. Freeman, Molar wear rates in ruminants—a new approach. Ann. Zool. Fenn. 31, 219–227 (1994)

    Google Scholar 

  • E. Thenius, Grundzüge der Faunen- und Verbreitungsgeschichte der Säugetiere. Eine historische Tiergeographie (Urban & Fischer, Munich, Stuttgart, 1980)

    Google Scholar 

  • C.S. Troy, D.E. MacHugh, J.F. Bailey, D.A. Magee, R.T. Loftus, P. Cunningham, A.T. Chamberlain, B.C. Sykes, D.G. Bradley, Genetic evidence for near-Eastern origins of European cattle. Nature 410, 1088 (2001). https://doi.org/10.1038/35074088

    Article  CAS  Google Scholar 

  • T. Van Vuure, Retracing the aurochs: history, morphology & ecology of an extinct wild Ox (Pensoft Pub, Sofia, 2005)

    Google Scholar 

  • S.E. Van Wieren, Digestive strategies in ruminants and nonruminants. Dig. Strateg. Rumin. Nonruminants 1–191 (1996)

    Google Scholar 

  • D.J. Wuebbles, K. Hayhoe, Atmospheric methane and global change. Earth-Sci. Rev. 57, 177–210 (2002). https://doi.org/10.1016/S0012-8252(01)00062-9

    Article  CAS  Google Scholar 

  • M.A. Zeder, B. Hesse, The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000). https://doi.org/10.1126/science.287.5461.2254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Pérez-Barbería .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Barbería, F. (2020). The Ruminant: Life History and Digestive Physiology of a Symbiotic Animal. In: Sustainable and Environmentally Friendly Dairy Farms. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46060-0_2

Download citation

Publish with us

Policies and ethics