Skip to main content

Spherical Harmonics and Linear Representations of Lie Groups

  • Chapter
  • First Online:
Differential Geometry and Lie Groups

Part of the book series: Geometry and Computing ((GC,volume 13))

Abstract

This chapter and the next focus on topics that are somewhat different from the more geometric and algebraic topics discussed in the previous chapters. Indeed, the focus of this chapter is on the types of functions that can be defined on a manifold, the sphere S n in particular, and this involves some analysis. A main theme of this chapter is to generalize Fourier analysis on the circle to higher dimensional spheres. One of our goals is to understand the structure of the space L 2(S n) of real-valued square integrable functions on the sphere S n, and its complex analog \(L^2_{\mathbb {C}}(S^n)\). Both are Hilbert spaces if we equip them with the inner product

$$\displaystyle \langle f, g\rangle _{S^n} = \int _{S^n} f(t)g(t) \, dt = \int _{S^n}fg\,\mathrm {Vol}_{S^n}, $$

and in the complex case with the Hermitian inner product

$$\displaystyle \langle f, g\rangle _{S^n} = \int _{S^n} f(t)\overline {g(t)} \, dt = \int _{S^n}f\overline {g}\,\mathrm {Vol}_{S^n}. $$

This means that if we define the L 2-norm associated with the above inner product as \(\left \|f\right \| = \sqrt {\langle f, f\rangle }\), then L 2(S n) and \(L^2_{\mathbb {C}}(S^n)\) are complete normed vector spaces (see Section 7.1 for a review of Hilbert spaces). It turns out that each of L 2(S n) and \(L^2_{\mathbb {C}}(S^n)\) contains a countable family of very nice finite-dimensional subspaces \(\mathcal {H}_k(S^n)\) (and \(\mathcal {H}^{\mathbb {C}}_k(S^n)\)), where \(\mathcal {H}_k(S^n)\) is the space of (real) spherical harmonics on S n, that is, the restrictions of the harmonic homogeneous polynomials of degree k (in nā€‰+ā€‰1 real variables) to S n (and similarly for \(\mathcal {H}^{\mathbb {C}}_k(S^n)\)); these polynomials satisfy the Laplace equation

$$\displaystyle \Delta P = 0, $$

where the operator Ī” is the (Euclidean) Laplacian,

$$\displaystyle \Delta = \frac {\partial ^2}{\partial x_1^2} + \cdots + \frac {\partial ^2}{\partial x_{n+1}^2}. $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Andrews, R. Askey, R. Roy, Special Functions, 1st edn. (Cambridge University Press, Cambridge, 2000)

    MATHĀ  Google ScholarĀ 

  2. S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory. GTM, vol. 137, 2nd edn. (Springer, New York, 2001)

    Google ScholarĀ 

  3. R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 228ā€“233 (2003)

    ArticleĀ  Google ScholarĀ 

  4. N. Bourbaki, Espaces Vectoriels Topologiques. ElƩments de MathƩmatiques (Masson, Paris, 1981)

    MATHĀ  Google ScholarĀ 

  5. T. Brƶcker, T. tom Dieck, Representations of Compact Lie Groups. GTM, vol. 98, 1st edn. (Springer, Berlin, Heidelberg, 1985)

    Google ScholarĀ 

  6. A. Deitmar, A First Course in Harmonic Analysis. UTM, 1st edn. (Springer, New York, 2002)

    Google ScholarĀ 

  7. J. DieudonnƩ, Special Functions and Linear Representations of Lie Groups. Regional Conference Series in Mathematics, vol. 42, 1st edn. (AMS, Providence, 1980)

    Google ScholarĀ 

  8. J. DieudonnĆ©, ƉlĆ©ments dā€™Analyse, Tome V. Groupes de Lie Compacts, Groupes de Lie Semi-Simples, 1st edn. (Edition Jacques Gabay, Paris, 2003)

    Google ScholarĀ 

  9. J. DieudonnĆ©, ƉlĆ©ments dā€™Analyse, Tome VI. Analyse Harmonique, 1st edn. (Edition Jacques Gabay, Paris, 2003)

    Google ScholarĀ 

  10. J. DieudonnĆ©, ƉlĆ©ments dā€™Analyse, Tome VII. Ɖquations Fonctionnelles LinĆ©aires. PremiĆØre partie, OpĆ©rateurs Pseudo-DiffĆ©rentiels, 1st edn. (Edition Jacques Gabay, Paris, 2003)

    Google ScholarĀ 

  11. J. DieudonnĆ©, ƉlĆ©ments dā€™Analyse, Tome II. Chapitres XII Ć  XV, 1st edn. (Edition Jacques Gabay, Paris, 2005)

    Google ScholarĀ 

  12. J. Dixmier, General Topology. UTM, 1st edn. (Springer, New York, 1984)

    Google ScholarĀ 

  13. J.J. Duistermaat, J.A.C. Kolk, Lie Groups. Universitext, 1st edn. (Springer, New York, 2000)

    Google ScholarĀ 

  14. G.B. Folland, A Course in Abstract Harmonic Analysis, 1st edn. (CRC Press, Boca Raton, 1995)

    MATHĀ  Google ScholarĀ 

  15. J. Fourier, ThƩorie Analytique de la Chaleur, 1st edn. (Edition Jacques Gabay, Paris, 1822)

    MATHĀ  Google ScholarĀ 

  16. J.H. Gallier, J. Quaintance, Differential Geometry and Lie Groups, A Computational Perspective (Springer, Berlin, 2018)

    MATHĀ  Google ScholarĀ 

  17. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Universitext, 2nd edn. (Springer, New York, 1993)

    Google ScholarĀ 

  18. R. Green, Spherical harmonic lighting: the gritty details, in Archives of the Game Developersā€™ Conference (2003), pp. 1ā€“47.

    Google ScholarĀ 

  19. B. Hall, Lie Groups, Lie Algebras, and Representations. An Elementary Introduction. GTM, vol. 222, 1st edn. (Springer, New York, 2003)

    Google ScholarĀ 

  20. S. Helgason, Geometric Analysis on Symmetric Spaces. SURV, vol. 39, 1st edn. (AMS, Providence, 1994)

    Google ScholarĀ 

  21. S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators and Spherical Functions. MSM, vol. 83, 1st edn. (AMS, Providence, 2000)

    Google ScholarĀ 

  22. H. Hochstadt, The Functions of Mathematical Physics, 1st edn. (Dover, New York, 1986)

    MATHĀ  Google ScholarĀ 

  23. A.A. Kirillov (ed.) Representation Theory and Noncommutative Harmonic Analysis. Encyclopaedia of Mathematical Sciences, vol. 22, 1st edn. (Springer, Berlin, 1994)

    Google ScholarĀ 

  24. A.W. Knapp, Representation Theory of Semisimple Groups, 1st edn. Princeton Landmarks in Mathematics (Princeton University Press, Princeton, 2001)

    Google ScholarĀ 

  25. A.W. Knapp, Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, 2nd edn. (BirkhƤuser, Basel, 2002)

    Google ScholarĀ 

  26. S. Lang, Real and Functional Analysis. GTM, vol. 142, 3rd edn. (Springer, New York, 1996)

    Google ScholarĀ 

  27. S. Lang, Undergraduate Analysis. UTM, 2nd edn. (Springer, New York, 1997)

    Google ScholarĀ 

  28. N.N. Lebedev, Special Functions and Their Applications, 1st edn. (Dover, New York, 1972)

    MATHĀ  Google ScholarĀ 

  29. M. Morimoto, Analytic Functionals on the Sphere. Translations of Mathematical Monographs, vol. 178, 1st edn. (AMS, Providence, 1998)

    Google ScholarĀ 

  30. B. Oā€™Neill, Semi-Riemannian Geometry with Applications to Relativity. Pure and Applies Mathematics, vol. 103, 1st edn. (Academic, New York, 1983)

    Google ScholarĀ 

  31. M.M. Postnikov, Geometry VI. Riemannian Geometry. Encyclopaedia of Mathematical Sciences, vol. 91, 1st edn. (Springer, Berlin, 2001)

    Google ScholarĀ 

  32. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw Hill, New York, 1987)

    MATHĀ  Google ScholarĀ 

  33. G. Sansone, Orthogonal Functions, 1st edn. (Dover, New York, 1991)

    Google ScholarĀ 

  34. L. Schwartz, Analyse I. ThƩorie des Ensembles et Topologie. Collection Enseignement des Sciences (Hermann, Paris, 1991)

    Google ScholarĀ 

  35. L. Schwartz, Analyse III. Calcul IntƩgral. Collection Enseignement des Sciences (Hermann, Paris, 1993)

    Google ScholarĀ 

  36. L. Schwartz, Analyse IV. Applications Ơ la ThƩorie de la Mesure. Collection Enseignement des Sciences (Hermann, Paris, 1993)

    Google ScholarĀ 

  37. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32 (Princeton University Press, Princeton, 1971)

    Google ScholarĀ 

  38. M.E. Taylor, Noncommutative Harmonic Analysis. Mathematical Surveys and Monographs, vol. 22, 1st edn. (AMS, Providence, 1986)

    Google ScholarĀ 

  39. A. Terras, Fourier Analysis on Finite Groups and Applications. Student Text, vol. 43, 1st edn. (Cambridge University Press, Cambridge, 1999)

    Google ScholarĀ 

  40. V.S. Varadarajan, An Introduction to Harmonic Analysis on Semisimple Lie Groups. Cambridge Studies in Advanced Mathematics, 1st edn. (Cambridge University Press, Cambridge, 1999)

    Google ScholarĀ 

  41. N.J. Vilenkin, Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22, 1st edn. (AMS, Providence, 1968)

    Google ScholarĀ 

  42. F. Warner, Foundations of Differentiable Manifolds and Lie Groups. GTM, vol. 94, 1st edn. (Springer, Berlin, 1983)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallier, J., Quaintance, J. (2020). Spherical Harmonics and Linear Representations of Lie Groups. In: Differential Geometry and Lie Groups. Geometry and Computing, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-46047-1_7

Download citation

Publish with us

Policies and ethics