Skip to main content

Ecosystem Engineering by Insect Herbivores: Non-trophic Interactions in Terrestrial Ecosystems

  • Chapter
  • First Online:
Evolutionary Ecology of Plant-Herbivore Interaction

Abstract

Ecosystem engineering is recognized as a relevant non-trophic interaction with overall positive effects on biodiversity. Ecosystem engineers (organisms that modify or create new habitats) are distributed in all type of ecosystems, but they are particularly abundant among insect herbivores. Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants, which can involve specialized adaptations to manipulate the tissues and physiology of their host plants. Recent research suggests that these adaptations could play an important role in the evolution of plant-insect interactions and insect diversification. In this chapter, I present a review of ecosystem engineering by insect herbivores, discussing the diversity and evolutionary origins of the main insect herbivore groups acting as ecosystem engineers, with a special focus on endophagy and plant manipulation strategies that enable insects to create new habitats. I also discuss the mechanisms and effects of habitat modification on arthropod communities associated with the modified habitats, as well as the evolutionary consequences of habitat modification. A qualitative review of the arthropod community associated with habitats engineered by different guilds of insect herbivores is presented. Finally, future directions and perspectives regarding key questions for further research are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson WG, Blair CP, Eubanks MD et al (2003) Sequential radiation of unrelated organisms: the gall fly Eurosta solidaginis and the tumbling flower beetle Mordellistena convicta. J Evol Biol 16(5):781–789

    CAS  PubMed  Google Scholar 

  • Almeida MFBD, Santos LRD, Carneiro MAA (2014) Senescent stem-galls in trees of Eremanthus erythropappus as a resource for arboreal ants. Rev Bras Entomol 58(3):265–272

    Google Scholar 

  • Andersen PC, Brodbeck BV, Herzog DC (2002) Girdling-induced nutrient accumulation in above ground tissue of peanuts and subsequent feeding by Spissistilus festinus, the three-cornered alfalfa hopper. Entomol Exp Appl 103(2):139–149

    CAS  Google Scholar 

  • Aranda-Rickert A, Rothen C, Diez P et al (2017) Sugary secretions of wasp galls: a want-to-be extrafloral nectar? Ann Bot 120(5):765–774

    PubMed  PubMed Central  Google Scholar 

  • Askew RR (1980) The diversity of insect communities in leaf mines and plant galls. J Anim Ecol 49(3):817–829

    Google Scholar 

  • Askew RR, Shaw MR (1986) Parasitoid communities: their size, structure and development. In Waage J, Greathead D (eds), Insect Parasitoids, 13th Symposium of Royal Entomological Society of London. Academic Press, London, pp 225–264

    Google Scholar 

  • Bailey JK, Whitham TG (2003) Interactions among elk, aspen, galling sawflies and insectivorous birds. Oikos 101(1):127–134

    Google Scholar 

  • Blair CP, Abrahamson WG, Jackman JA et al (2005) Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution 59(2):304–316

    PubMed  Google Scholar 

  • Body M, Kaiser W, Dubreuil G et al (2013) Leaf-miners co-opt microorganisms to enhance their nutritional environment. J Chem Ecol 39(7):969–977

    CAS  PubMed  Google Scholar 

  • Calderón-Cortés N, Quesada M, Escalera-Vázquez LH (2011) Insects as stem engineers: interactions mediated by the twig-girdler Oncideres albomarginata chamela enhance arthropod diversity. PLoS One 6(4):e19083

    PubMed  PubMed Central  Google Scholar 

  • Calderón-Cortés N, Uribe-Mú CA, Martínez-Méndez AK et al (2016) Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela. J Insect Physiol 84:128–136

    PubMed  Google Scholar 

  • Cappuccino N, Martin MA (1994) Eliminating early-season leaf-tiers of paper birch reduces abundance of mid-summer species. Ecol Entomol 19(4):399–401

    Google Scholar 

  • Chiappini E, Aldini RN (2011) Morphological and physiological adaptations of wood-boring beetle larvae in timber. J Entomol Acarol Res 43(2):47–59

    Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf-mining habit. Oikos 79(1):6–25

    Google Scholar 

  • Cook LG, Gullan PJ (2004) The gall-inducing habit has evolved multiple times among the eriococcid scale insects (Sternorrhyncha: Coccoidea: Eriococcidae). Biol J Linnean Soc 83(4):441–452

    Google Scholar 

  • Cornelissen T, Cintra F, Santos JC (2016) Shelter-building insects and their role as ecosystem engineers. Neotrop Entomol 45(1):1–12

    CAS  PubMed  Google Scholar 

  • Crawford KM, Crutsinger GM, Sanders NJ (2007) Host-plant genotypic diversity mediates the distribution of an ecosystem engineer. Ecology 88(8):2114–2120

    PubMed  Google Scholar 

  • Crespi BJ, Carmean DA, Chapman TW (1997) Ecology and evolution of galling thrips and their allies. Annu Rev Entomol 42(1):51–71

    CAS  PubMed  Google Scholar 

  • Crutsinger GM, Sanders NJ (2005) Aphid-tending ants affect secondary users in leaf shelters and rates of herbivory on Salix hookeriana in a coastal dune habitat. Am Midl Nat 154(2):296–305

    Google Scholar 

  • Crutsinger GM, Cadotte MW, Sanders NJ (2009) Plant genetics shapes inquiline community structure across spatial scales. Ecol Lett 12:285–292

    PubMed  Google Scholar 

  • Cuddington K, Hastings A (2004) Invasive engineers. Ecol Model 178(3–4):335–347

    Google Scholar 

  • Cuddington K, Wilson WG, Hastings A (2009) Ecosystem engineers: feedback and population dynamics. Am Nat 173(4):488–498

    CAS  PubMed  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould, through the action of worms, with observations on their habits. John Murray, London

    Google Scholar 

  • Di Iorio OR (1994) Cerambycidae y otros Coleoptera emergidos de ramas cortadas por Oncideres germari (Lamiinae: Ondderini) en el norte argentino. Rev Biol Trop 42(3):649–661

    Google Scholar 

  • Eliason EA, Potter DA (2000) Biology of Callirhytis cornigera (Hymenoptera: Cynipidae) and the arthropod community inhabiting its galls. Environ Entomol 29(3):551–559

    Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they? Ann Entomol Soc Am 100(2):95–100

    Google Scholar 

  • Evans HF, Moraal LG, Pajares JA (2007) Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Lieutier F, Day KR, Battisti A, Grégoire JC et al (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 447–474

    Google Scholar 

  • Farrell BD, Sequeira AS (2004) Evolutionary rates in the adaptive radiation of beetles on plants. Evolution 58(9):1984–2001

    PubMed  Google Scholar 

  • Feller IC, Mathis WN (1997) Primary herbivory by wood-boring insects along an architectural gradient of Rhizophora mangle. Biotropica 29(4):440–451

    Google Scholar 

  • Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90(1):14–20

    PubMed  Google Scholar 

  • Fernandes GW, Boecklen WJ, Martins RP et al (1989) Ants associated with a coleopterous leaf-bud gall on Xylopia aromatica (Annonaceae). Proc Entomol Soc Wash 91(1):31–87

    Google Scholar 

  • Fernandes GW, Carneiro MA, Isaias RM (2012) Gall-inducing insects: from anatomy to biodiversity. In: Panizzi AR, Parra JRP (eds) Insect bioecology and nutrition for integrated pest management. CRC Press, Boca Raton, pp 369–395

    Google Scholar 

  • Forcella F (1982) Why twig-girdling beetles girdle twigs. Naturwissenschaften 69(8):398–400

    Google Scholar 

  • Fukui A (2001) Indirect interactions mediated by leaf shelters in animal–plant communities. Popul Ecol 43(1):31–40

    Google Scholar 

  • Fukui A, Murakami M, Konno K et al (2002) A leaf-rolling caterpillar improves leaf quality. Entomol Sci 5(3):263–266

    Google Scholar 

  • Gallardo P, Cárdenas AM (2016) Long-term monitoring of saproxylic beetles from Mediterranean oak forests: an approach to the larval biology of the most representative species. J Insect Conserv 20(6):999–1009

    Google Scholar 

  • Ganong CN, Dussourd DE, Swanson JD (2012) Girdling by notodontid caterpillars: distribution and occurrence. Arthropod Plant Interact 6(4):621–633

    Google Scholar 

  • Giron D, Huguet E (2011) A genomically tractable and ecologically relevant model herbivore for a model plant: new insights into the mechanisms of insect–plant interactions and evolution. Mol Ecol 20(5):990–994

    Google Scholar 

  • Giron D, Kaiser W, Imbault N et al (2007) Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol Lett 3(3):340–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giron D, Huguet E, Stone GN et al (2016) Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol 84:70–89

    CAS  PubMed  Google Scholar 

  • Grehan JR (1987) Evolution of arboreal tunnelling by larvae of Aenetus (Lepidoptera: Hepialidae). N Z J Zool 14(4):441–462

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, London

    Google Scholar 

  • Haack RA, Slansky F (1987) Nutritional ecology of wood feeding Coleoptera, Lepidoptera, and Hymenoptera. In: Slansky F, Rodríguez JG (eds) Nutritional ecology of insect, mites, spiders and related invertebrates. Wiley, New York, pp 231–355

    Google Scholar 

  • Hanks LM (1999) Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu Rev Entomol 44(1):483–505

    CAS  PubMed  Google Scholar 

  • Hastings A, Byers JE, Crooks JA et al (2007) Ecosystem engineering in space and time. Ecol Lett 10(2):153–164

    PubMed  Google Scholar 

  • Hayward A, Stone GN (2005) Oak gall wasp communities: evolution and ecology. Basic Appl Ecol 6(5):435–443

    Google Scholar 

  • Henriques NR, Cintra F, Pereira CC et al (2018) Indirect effects of ecosystem engineering by insects in a tropical liana. Arthropod Plant Interact 13(3):499–504

    Google Scholar 

  • Heraty J, Ronquist F, Carpenter JM et al (2011) Evolution of the hymenopteran megaradiation. Mol Phylogenet Evol 60(1):73–88

    PubMed  Google Scholar 

  • Hering EM (1951) Biology of leaf miners. Springer, Berlin

    Google Scholar 

  • Hovore FT, Penrose RL (1982) Notes on Cerambycidae co-inhabiting girdles of Oncideres pustulata LeConte (Coleoptera: Cerambycidae). Southwest Nat 27(1):23–27

    Google Scholar 

  • Hunt T, Bergsten J, Levkanicova Z et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318(5858):1913–1916

    CAS  PubMed  Google Scholar 

  • Johnson SN, Mayhew PJ, Douglas AE et al (2002) Insects as leaf engineers: can leaf-miners alter leaf structure for birch aphids? Funct Ecol 16(5):575–584

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystems engineers. Oikos 69(3):373–386

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7):1946–1957

    Google Scholar 

  • Jones CG, Gutiérrez JL, Byers J et al (2010) A framework for understanding physical ecosystem engineering by organisms. Oikos 119(12):1862–1869

    Google Scholar 

  • Joseph MB, Gentles M, Pearse IS (2011) The parasitoid community of Andricus quercus californicus and its association with gall size, phenology, and location. Biodivers Conserv 20(1):203–216

    Google Scholar 

  • Kagata H, Ohgushi T (2004) Leaf miner as a physical ecosystem engineer: secondary use of vacant leaf mines by other arthropods. Ann Entomol Soc Am 97(5):923–927

    Google Scholar 

  • Kahn DM, Cornell HV (1989) Leafminers, early leaf abscission, and parasitoids: a tritrophic interaction. Ecology 70(5):1219–1226

    Google Scholar 

  • Kaiser W, Huguet E, Casas J et al (2010) Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc Lond B Biol Sci 277(1692):2311–2319

    CAS  Google Scholar 

  • Kirkendall LR, Biedermann PH, Jordal BH (2015) Evolution and diversity of bark and ambrosia beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles. Academic, London p, pp 85–156

    Google Scholar 

  • Labandeira CC (2002) The history of associations between plants and animals. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Oxford, pp 248–261

    Google Scholar 

  • Laland KN, Boogert NJ (2010) Niche construction, co-evolution and biodiversity. Ecol Econ 69(4):731–736

    Google Scholar 

  • Laland K, Matthews B, Feldman MW (2016) An introduction to niche construction theory. Evol Ecol 30(2):191–202

    PubMed  PubMed Central  Google Scholar 

  • Laland K, Odling-Smee J, Endler J (2017) Niche construction, sources of selection and trait coevolution. Interface Focus 7(5):20160147

    PubMed  PubMed Central  Google Scholar 

  • Lawton JH, Jones CG (1993) Linking species and ecosystem perspectives. Trends Ecol Evol 8(9):311–313

    CAS  PubMed  Google Scholar 

  • Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Jones CG, Lawton JH (eds) Linking species & ecosystems. Springer, Boston, pp 141–150

    Google Scholar 

  • Lemes PG, Cordeiro G, Jorge IR et al (2015) Cerambycidae and other Coleoptera associated with branches girdled by Oncideres saga Dalman (Coleoptera: Cerambycidae: Lamiinae: Onciderini). Coleopt Bull 69(1):159–167

    Google Scholar 

  • Li CY, Weiss D, Goldschmidt EE (2003) Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees. Ann Bot 92(1):137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieutier F, Day KR, Battisti A et al (eds) (2004) Bark and wood boring insects in living trees in Europe: a synthesis. Springer, Dordrecht

    Google Scholar 

  • Lill JT, Marquis RJ (2003) Ecosystem engineering by caterpillars increases insect herbivore diversity on white oak. Ecology 84(3):682–690

    Google Scholar 

  • Lill JT, Marquis RJ (2004) Leaf ties as colonization sites for forest arthropods: an experimental study. Ecol Entomol 29(3):300–308

    Google Scholar 

  • Lill JT, Marquis RJ (2007) Microhabitat manipulation: ecosystem engineering by shelter-building insects. In: Cuddington K, Byers JE, Hastings A et al (eds) Ecosystem engineers: plants to protists. Academic, Elsevier, New York, pp 107–138

    Google Scholar 

  • Lill JT, Marquis RJ, Walker MA et al (2007) Ecological consequences of shelter sharing by leaf-tying caterpillars. Entomol Exp Appl 124(1):45–53

    Google Scholar 

  • Liu WH, Dai XH, Xu JS (2015) Influences of leaf-mining insects on their host plants: a review. Collect Bot 34:e005

    Google Scholar 

  • Marquis RJ (2010) The role of herbivores in terrestrial trophic cascades. In: Terborgh J, Estes JA (eds) Trophic cascades: predators, prey and the changing dynamics of nature. Island Press, Washington, DC, pp 109–123

    Google Scholar 

  • Marquis RJ, Lill JT (2007) Effects of arthropods as physical ecosystem engineers on plant-based trophic interaction webs. Indirect interaction webs: non trophic linkages through induced plant traits. Cambridge University Press, New York, pp 246–274

    Google Scholar 

  • Marquis RJ, Lill JT (2010) Impact of plant architecture versus leaf quality on attack by leaf-tying caterpillars on five oak species. Oecologia 163(1):203–213

    PubMed  Google Scholar 

  • Marquis RJ, Lill JT, Piccini A (2002) Effect of plant architecture on colonization and damage by leaf-tying caterpillars of Quercus alba. Oikos 99(3):531–537

    Google Scholar 

  • Martínez AJ, López-Portillo J, Eben A et al (2009) Cerambycid girdling and water stress modify mesquite architecture and reproduction. Popul Ecol 51(4):533–541

    Google Scholar 

  • Martinsen GD, Floate KD, Waltz AM et al (2000) Positive interactions between leafrollers and other arthropods enhance biodiversity on hybrid cottonwoods. Oecologia 123(1):82–89

    CAS  PubMed  Google Scholar 

  • Matthews B, De Meester L, Jones CG et al (2014) Under niche construction: an operational bridge between ecology, evolution, and ecosystem science. Ecol Monogr 84(2):245–263

    Google Scholar 

  • Mitter C, Davis DR, Cummings MP (2017) Phylogeny and evolution of Lepidoptera. Annu Rev Entomol 62:265–283

    CAS  PubMed  Google Scholar 

  • Murakami M (1999) Effect of avian predation on survival of leaf-rolling lepidopterous larvae. Popul Ecol 41(2):135–138

    Google Scholar 

  • Nakamura M, Ohgushi T (2003) Positive and negative effects of leaf shelters on herbivorous insects: linking multiple herbivore species on a willow. Oecologia 136(3):445–449

    PubMed  Google Scholar 

  • Nakamura M, Miyamoto Y, Ohgushi T (2003) Gall initiation enhances the availability of food resources for herbivorous insects. Funct Ecol 17(6):851–857

    Google Scholar 

  • Nason JD, Heard SB, Williams FR (2002) Host-associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae). Evolution 56(7):1475–1488

    CAS  PubMed  Google Scholar 

  • Novais SM, DaRocha WD, Calderón-Cortés N et al (2017) Wood-boring beetles promote ant nest cavities: extended effects of a twig-girdler ecosystem engineer. Basic Appl Ecol 24:53–59

    Google Scholar 

  • Novais S, Calderón-Cortés N, Sánchez-Montoya G et al (2018) Arthropod facilitation by wood-boring beetles: spatio-temporal distribution mediated by a twig-girdler ecosystem engineer. J Insect Sci 18(5):14

    PubMed Central  Google Scholar 

  • Nyman T, Widmer A, Roininen H (2000) Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 54(2):526–533

    CAS  PubMed  Google Scholar 

  • Odling-Smee FJ, Laland KN et al (1996) Niche construction. Am Nat 147(4):641–648

    Google Scholar 

  • Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst 36:81–105

    Google Scholar 

  • Ohgushi T (2008) Herbivore-induced indirect interaction webs on terrestrial plants: the importance of non-trophic, indirect, and facilitative interactions. Entomol. Exp Appl 128(1):217–229

    Google Scholar 

  • Oliveira DC, Isaias RMS, Fernandes GW et al (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113

    CAS  PubMed  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100(910):65–75

    Google Scholar 

  • Paulino Neto HF, Vasconcellos-Neto J, Carmello-Guerreiro SM (2006) The biology of Oncideres humeralis Thorms (Coleoptera: Cerambycidae: Lamiinae) and new Cerambycidae–Melastomataceae host-plant associations. Stud Neotrop Fauna Environ 41(3):227–233

    Google Scholar 

  • Polk KL, Ueckert DN (1973) Biology and ecology of a mesquite twig girdler, Oncideres rhodosticta, in west Texas. Ann Entomol Soc Am 66(2):411–417

    Google Scholar 

  • Power ME, Tilman D, Estes JA et al (1996) Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. Bioscience 46(8):609–620

    Google Scholar 

  • Price PW (2005) Adaptive radiation of gall-inducing insects. Basic Appl Ecol 6(5):413–421

    Google Scholar 

  • Price PW, Westoby M, Rice B et al (1986) Parasite mediation in ecological interactions. Annu Rev Ecol Syst 17(1):487–505

    Google Scholar 

  • Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16(1):15–24

    Google Scholar 

  • Raman A, Schaefer CW, Withers TM (eds) (2005) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Taylor & Francis, London

    Google Scholar 

  • Raynaud X, Jones CG, Barot S (2013) Ecosystem engineering, environmental decay and environmental states of landscapes. Oikos 122(4):591–600

    Google Scholar 

  • Regier JC, Brown JW, Mitter C et al (2012) A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS One 7(4):e35574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ripple WJ, Estes JA, Schmitz OJ et al (2016) What is a trophic cascade? Trends Ecol Evol 31(11):842–849

    PubMed  Google Scholar 

  • Rogers CE (1977) Bionomics of Oncideres cingulata (Coleoptera: Cerambycidae) on mesquite. J Kans Entomol Soc 50(2):222–228

    Google Scholar 

  • Romero GQ, Gonçalves-Souza T, Vieira C et al (2015) Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis. Biol Rev Camb Philos Soc 90(3):877–890

    PubMed  Google Scholar 

  • Romić I, Nakajima Y (2018) Ecosystem engineering as an energy transfer process: a simple agent-based model. Theor Ecol 11(2):175–187

    Google Scholar 

  • Sanders D, Jones CG, Thébault E et al (2014) Integrating ecosystem engineering and food webs. Oikos 123(5):513–524

    Google Scholar 

  • Santos MG, Porto GF, Lancellotti IR et al (2019) Ant fauna associated with Microgramma squamulosa (Kaulf) de la Sota (Polypodiaceae) fern galls. Rev Bras Entomol 63(2):101–103

    Google Scholar 

  • Sanver D, Hawkins BA (2000) Galls as habitats: the inquiline communities of insect galls. Basic Appl Ecol 1(1):3–11

    Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18(10):512–522

    Google Scholar 

  • Szőcs L, Melika G, Thuróczy C et al (2015) Parasitoid complex of leaf miner Pyllonorycter comparella (Lepidoptera, Gracillariidae) in Hungary. Acta Silvatica et Lignaria Hungarica 11(2):91–98

    Google Scholar 

  • Tack AJ, Ovaskainen O, Harrison PJ (2009) Competition as a structuring force in leaf miner communities. Oikos 118(6):809–818

    Google Scholar 

  • Trautwein MD, Wiegmann BM, Beutel R et al (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57:449–468

    CAS  PubMed  Google Scholar 

  • Uesugi A, Morrell K, Poelman EH et al (2016) Modification of plant-induced responses by an insect ecosystem engineer influences the colonization behaviour of subsequent shelter-users. J Ecol 104(4):1096–1105

    CAS  Google Scholar 

  • Uribe-Mú CA, Quesada M (2006) Preferences, patterns and consequences of branch removal on the dioecious tropical tree Spondias purpurea (Anacardiaceae) by the insect borer Oncideres albomarginata chamela (Cerambycidae). Oikos 112(3):691–697

    Google Scholar 

  • Utsumi S, Ohgushi T (2009) Community-wide impacts of herbivore-induced plant regrowth on arthropods in a multi-willow species system. Oikos 118(12):1805–1815

    Google Scholar 

  • Utsumi S, Nakamura M, Ohgushi T (2009) Community consequences of herbivore-induced bottom–up trophic cascades: the importance of resource heterogeneity. J Anim Ecol 78(5):953–963

    PubMed  Google Scholar 

  • Vieira C, Romero GQ (2013) Ecosystem engineers on plants: indirect facilitation of arthropod communities by leaf-rollers at different scales. Ecology 94(7):1510–1518

    PubMed  Google Scholar 

  • Wang HG, Marquis RJ, Baer CS (2012) Both host plant and ecosystem engineer identity influence leaf-tie impacts on the arthropod community of Quercus. Ecology 93(10):2186–2197

    PubMed  Google Scholar 

  • Washburn JO (1984) Mutualism between a cynipid gall wasp and ants. Ecology 65(2):654–656

    Google Scholar 

  • Wetzel WC, Screen RM, Li I et al (2016) Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees. Ecology 97(2):427–438

    PubMed  Google Scholar 

  • Wheeler J, Longino JT (1988) Arthropods in live oak galls in Texas. Entomol News 99(1):25–29

    Google Scholar 

  • Whitham TG, Young WP, Martinsen GD et al (2003) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84(3):559–573

    Google Scholar 

  • Wright JP, Jones CG (2004) Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85(8):2071–2081

    Google Scholar 

  • Yoneya K, Inui Y, Ishihara M et al (2014) Herbivore-constructed leaf shelters on Salix eriocarpa shoots affect arthropod communities. J Plant Interact 9(1):364–369

    Google Scholar 

  • Zhong Z, Li X, Pearson D et al (2017) Ecosystem engineering strengthens bottom-up and weakens top-down effects via trait-mediated indirect interactions. Proc R Soc Lond B Biol Sci 284(1863):20170894

    Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT grant CB-2015-253420 and DGAPA-PAPIIT UNAM grants IA200918 and IN217420. The author thanks Ek del Val for her permission to use some of her leaf shelter photos and Ken Oyama and Luis H. Escalera Vázquez for helpful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Calderón-Cortés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calderón-Cortés, N. (2020). Ecosystem Engineering by Insect Herbivores: Non-trophic Interactions in Terrestrial Ecosystems. In: Núñez-Farfán, J., Valverde, P. (eds) Evolutionary Ecology of Plant-Herbivore Interaction. Springer, Cham. https://doi.org/10.1007/978-3-030-46012-9_8

Download citation

Publish with us

Policies and ethics