Skip to main content

Latitudinal and Elevational Gradients in Plant Defences and Herbivory in Temperate Trees: Recent Findings, Underlying Drivers, and the Use of Genomic Tools for Uncovering Clinal Evolution

  • Chapter
  • First Online:

Abstract

Environmental gradients serve as powerful settings to elucidate the ecological and evolutionary processes driving changes in species diversity, trait evolution, and ecosystem function. Classic theory holds that stronger plant-herbivore interactions under more stable and warmer climates towards the equator and sea level have resulted in stronger selection on plant defences. We hereby address latitudinal and elevational gradients in plant defences and herbivory follow these predictions for a number of dominant taxa of temperate trees. Many of these taxa include species that span broad latitudinal and elevational ranges and thus represent useful models for testing clinal variation in plant defences and herbivory. First, we review recent studies testing for latitudinal and elevational gradients in temperate tree defences and herbivory. Second, we analyse these results in the light of classical theory and discuss potential deviations from expected patterns and candidate mechanisms. Third, we analysed the use of genomic tools for assessing the genetic basis of clinal evolution in plant defences, a promising alternative toward reducing inconsistencies and identifying commonalities in ecological and evolutionary processes. Our review indicates considerable variation in the strength and direction of elevational and latitudinal gradients in temperate tree defences and herbivory. Strikingly, patterns that are opposite to classic predictions are equally common and, in some cases, even more common than expected patterns. In light of these findings, we argue for a need to apply consistent methods across studies, conduct more comprehensive assessments of plant defensive phenotypes, and explicitly consider the role of abiotic factors. Furthermore, as future research closes these gaps, the adoption of genomic tools will open an unprecedented opportunity to launch a new generation of studies. To achieve this, there is a need to merge research on landscape genetics and ecological studies of plant-intraspecific clines in plant-herbivore interactions to unveil the genetic basis of clinal evolution in plant defences. Likewise, analyses of the molecular level evolution of target genes associated with plant defence also hold a large potential for assessing plant defence macro-evolutionary patterns along environmental clines. Applying these tools will help elucidate the mechanisms of adaptive evolution in plant defence along environmental clines and contribute to develop new theory by uncovering patterns not apparent previously from studies based solely on measurements of plant phenotypes and species interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdala-Roberts L, Marquis RJ (2007) Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae). Oecologia 154:315–326

    Article  PubMed  Google Scholar 

  • Abdala-Roberts L, Mooney KA, Quijano-Medina T, Campos-Navarrete MJ, González-Moreno A, Parra-Tabla V (2015) Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. Oikos 124:1527–1535

    Article  Google Scholar 

  • Abdala-Roberts L, Rasmann S, Berny-Mier y Terán JC, Covelo F, Glauser G, Moreira X (2016a) Biotic and abiotic factors associated with altitudinal variation in plant traits and herbivory in a dominant oak species. Am J Bot 103:2070–2078

    Article  CAS  PubMed  Google Scholar 

  • Abdala-Roberts L, Moreira X, Rasmann S, Parra-Tabla V, Mooney KA (2016b) Test of biotic and abiotic correlates of latitudinal variation in defenses in the perennial herb Ruellia nudiflora. J Ecol 104:580–590

    Article  Google Scholar 

  • Agrawal AA (2000) Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81:1804–1813

    Article  Google Scholar 

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Agrawal AA (2011) Current trends in the evolutionary ecology of plant defense. Funct Ecol 25:420–432

    Article  Google Scholar 

  • Agrawal AA, Strauss SY, Stout MJ (1999) Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution 53:1093–1104

    Article  PubMed  Google Scholar 

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Anderson JT, Geber MA (2010) Demographic source-sink dynamics restrict local adaptation in Elliott’s blueberry (Vaccinium elliottii). Evolution 64:370–384

    Article  PubMed  Google Scholar 

  • Anderson JT, Eckhart VM, Geber MA (2015) Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border. Evolution 69:2249–2261

    Article  PubMed  Google Scholar 

  • Andrew NR, Hughes L (2005) Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos 108:176–182

    Article  Google Scholar 

  • Anstett DN, Naujokaitis-Lewis I, Johnson MTJ (2014) Latitudinal gradients in herbivory on Oenothera biennis vary according to herbivore guild and specialization. Ecology 95:2915–2923

    Article  Google Scholar 

  • Anstett DN, Ahern JR, Glinos J, Nawar N, Salminen J-P, Johnson MTJ (2015) Can genetically based clines in plant defence explain greater herbivory at higher latitudes? Ecol Lett 18:1376–1386

    Article  PubMed  Google Scholar 

  • Anstett DN, Nunes KA, Baskett C, Kotanen PM (2016) Sources of controversy surrounding latitudinal patterns in herbivory and defense. Trends Ecol Evol 31:789–802

    Article  PubMed  Google Scholar 

  • Baskett CA, Schemske DW (2018) Latitudinal patterns of herbivore pressure in temperate herb support the biotic interactions hypothesis. Ecol Lett 4:578–587

    Article  Google Scholar 

  • Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O (2017) New strategies and tools in quantitative genetics: how to go from the phenotype to the genotype. Annu Rev Plant Biol 68:435–455

    Article  CAS  PubMed  Google Scholar 

  • Berardi AE, Fields PD, Abbate JL, Taylor DR (2016) Elevational divergence and clinal variation in floral color and leaf chemistry in Silene vulgaris. Am J Bot 103:1508–1523

    Article  CAS  PubMed  Google Scholar 

  • Bergelson J, Dwyer G, Emerson J (2001) Models and data on plant-enemy coevolution. Annu Rev Genet 35:469–499

    Article  CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Brachi B, Meyer CG, Villoutreix R, Platt A, Morton TC, Roux F, Bergelson J (2015) Co-selected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. Proc Natl Acad Sci USA 112:4032–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragg JG, Supple MA, Andrew RL, Borevitz JO (2015) Genomic variation across landscapes: insights and applications. New Phytol 207:953–967

    Article  PubMed  Google Scholar 

  • Brunner PC, Torriani SF, Croll D, Stukenbrock EH, McDonald BA (2013) Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 30:1337–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona D, Fornoni J (2013) Herbivores can select for mixed defensive strategies in plants. New Phytol 197:576–585

    Article  PubMed  Google Scholar 

  • Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367

    Article  Google Scholar 

  • Carmona D, Hollister JD, Greiner S, Wright SI, Ness RW, Johnson MTJ (2019) The effects of losing sex on the molecular evolution of plant defense. bioRxiv:683219

    Google Scholar 

  • Cavender-Bares J (2019) Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytol 221:669–692

    Article  PubMed  Google Scholar 

  • Cheplick GP (2015) Approaches to plant evolutionary ecology. Oxford University Press, Oxford

    Google Scholar 

  • Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 31:338–342

    Article  CAS  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species I. Effects of varied environments on Western North American plants. Carnegie Inst Wash Publ 520:1–452

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1947) Heredity of geographically and ecologically isolated races. Am Nat 81:114–133

    Article  CAS  PubMed  Google Scholar 

  • Coley PD, Kursar TA (2014) Is the high diversity in tropical forests driven by the interactions between plants and their pests? Science 343:35–36

    Article  CAS  PubMed  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S (2018) Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics 19:217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TG (2004) Environmental energy and evolutionary rates in flowering plants. Proc R Soc B 271:2195–2200

    Article  PubMed  PubMed Central  Google Scholar 

  • De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J (2014) Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Mol Ecol 23:4709–4721

    Article  PubMed  CAS  Google Scholar 

  • De Mita S, Thuillet AC, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Y (2013) Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol 22:1383–1399

    Article  PubMed  Google Scholar 

  • de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116:249–254

    Article  PubMed  Google Scholar 

  • Descombes P, Marchon J, Pradervand JN, Bilat J, Guisan A, Rasmann S, Pellissier L (2017) Community-level plant palatability increases with elevation as insect herbivore abundance declines. J Ecol 105:142–151

    Article  Google Scholar 

  • Dobzhansky T (1950) Evolution in the tropics. Am Sci 38:209–221

    Google Scholar 

  • Dostálek T, Rokaya MB, Maršík P, Rezek J, Skuhrovec J, Pavela R, Münzbergová Z (2016) Trade-off among different anti-herbivore defence strategies along an altitudinal gradient. AoB Plants 8:plw026

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert AJ, Van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB (2010) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185:969–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlén J (2014) Selection on flowering time in a life-cycle context. J Ecol 124:92–101

    Google Scholar 

  • Endara MJ, Coley PD (2011) The resource availability hypothesis revisited: a meta-analysis. Funct Ecol 25:389–398

    Article  Google Scholar 

  • Endara M-J, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA (2017) Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc Natl Acad Sci U S A 114:E7499–E7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, Princeton

    Google Scholar 

  • Etterson JR (2004) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the Great Plains. Evolution 58:1446–1458

    Article  PubMed  Google Scholar 

  • FAO (2012) State of the world’s forests. Rome

    Google Scholar 

  • Fineblum WL, Rausher MD (1995) Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature 377:517–520

    Article  CAS  Google Scholar 

  • Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P, Fox M, Glassmire AE, Hazen R, Hrcek J, Jahner JP, Kaman O, Kozubowski TJ, Kursar TA, Lewis OT, Lill J, Marquis RJ, Miller SE, Morais HC, Murakami M, Nickel H, Pardikes NA, Ricklefs RE, Singer MS, Smilanich AM, Stireman JO, Villamarín-Cortez S, Vodka S, Volf M, Wagner DL, Walla T, Weiblen GD, Dyer LA (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci USA 112:442–447

    Article  CAS  PubMed  Google Scholar 

  • Frost CJ, Hunter MD (2008) Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings. New Phytologist 178:835–845

    Article  CAS  Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci U S A 106:18054–18061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galmán A, Abdala-Roberts L, Zhang S, Berny-Mier y Terán JC, Rasmann S, Moreira X (2018) A global analysis of elevational gradients in leaf herbivory and its underlying drivers: effects of plant growth form, leaf habit, and climatic correlates. J Ecol 106:413–421

    Article  CAS  Google Scholar 

  • Galmán A, Petry WK, Abdala-Roberts L, Butrón A, de la Fuente M, Francisco M, Kergunteuil A, Rasmann S, Moreira X (2019) Inducibility of chemical defences in young oak trees is stronger in species with high elevational ranges. Tree Physiol 39:606–614

    Article  PubMed  CAS  Google Scholar 

  • Garibaldi LA, Kitzberger T, Chaneton EJ (2011a) Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 167:117–129

    Article  PubMed  Google Scholar 

  • Garibaldi LA, Kitzberger T, Ruggiero A (2011b) Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits? Glob Ecol Biogeogr 20:609–619

    Article  Google Scholar 

  • Gillman LN, Keeling DJ, Ross HA, Wright SD (2009) Latitude, elevation and the tempo of molecular evolution in mammals. Proc R Soc B 276:3353–3359

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould B, Moeller DA, Eckhart VM, Tiffin P, Fabio E, Geber MA (2013) Local adaptation and range boundary formation in response to complex environmental gradients across the geographical range of Clarkia xantiana ssp. xantiana. J Ecol 102:95–107

    Article  Google Scholar 

  • Grossman JJ, Vanhellemont M, Barsoum N, Bauhus J, Bruelheide H, Castagneyrol B, Cavender-Bares J, Eisenhauer N, Ferlian O, Gravel D, Hector A, Jactel H, Kreft H, Mereu S, Messier C, Muys B, Nock C, Paquette A, Parker JD, Perring MP, Ponette Q, Reich PB, Schuldt A, Staab M, Weih M, Zemp DC, Scherer-Lorenzen M, Verheyen K (2018) Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environ Exp Bot 152:68–69

    Article  Google Scholar 

  • Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL (2019) Biotic interactions affect fitness across latitudes, but only drive local adaptation in the tropics. bioRxiv

    Google Scholar 

  • HerschGreen EI, Myburg H, Johnson MTJ (2012) Adaptive molecular evolution of a defence gene in sexual but not functionally asexual evening primroses. J Evol Biol 25:1576–1586

    Article  CAS  Google Scholar 

  • Hirano M, Sakaguchi S, Takahashi K (2017) Phenotypic differentiation of the Solidago virgaurea complex along an elevational gradient: insights from a common garden experiment and population genetics. Ecol Evol 28:6949–6962

    Article  Google Scholar 

  • Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat 188:379–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaramillo-Correa JP, Prunier J, Vázquez-Lobo A, Keller SR, Moreno-Letelier A (2015) Molecular signatures of adaptation and selection in forest trees. Adv Bot Res 74:265–306

    Article  CAS  Google Scholar 

  • Johnson MTJ, Rasmann S (2011) The latitudinal herbivory defence hypothesis takes a detour on the map. New Phytol 191:589–592

    Article  PubMed  Google Scholar 

  • Juenger T, Bergelson J (1998) Pairwise versus diffuse natural selection and the multiple herbivores of scarlet gilia, Ipomopsis aggregata. Evolution 52:1583–1592

    Article  PubMed  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–347

    Article  Google Scholar 

  • Kawecki T, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kempel A, Schadler M, Chrobock T, Fischer M, van Kleunen M (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Natl Acad Sci U S A 108:5685–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kergunteuil A, Röder G, Rasmann S (2019) Environmental gradients and the evolution of tri-trophic interactions. Ecol Lett 22:292–301

    Article  PubMed  Google Scholar 

  • Kooyers NJ, Blackman BK, Holeski LM (2017) Optimal defence theory explains deviations from latitudinal herbivory defence hypothesis. Ecol Lett 98:1036–1048

    Article  Google Scholar 

  • Koricheva J, Nykanen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163:64–75

    Article  Google Scholar 

  • Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  Google Scholar 

  • Kozlov MV, van Nieukerken EJ, Zverev V, Zvereva EL (2013) Abundance and diversity of birch-feeding leafminers along latitudinal gradients in northern Europe. Ecography 36:1138–1149

    Article  Google Scholar 

  • Kozlov MV, Lanta V, Zverev V, Zvereva EL (2015) Global patterns in background losses of woody plant foliage to insects. Glob Ecol Biogeogr 24:1126–1135

    Article  Google Scholar 

  • Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE, Weber MG, Murakami ET, Drake C, McGregor R, Coley PD (2009) The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc Natl Acad Sci U S A 106:18073–18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CR, Mitchell-Olds T (2012) Environmental adaptation contributes to gene polymorphism across the Arabidopsis thaliana genome. Mol Biol Evol 29:3721–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Loughnan D, Williams JL (2019) Climate and leaf traits, not latitude, explain variation in plant–herbivore interactions across a species’ range. J Ecol 107:913–922

    Article  Google Scholar 

  • Lowry DB, Popovic D, Brennan DJ, Holeski LM (2019) Mechanisms of locally adaptive shift in allocation among growth, reproduction, and herbivore resistance in Mimulus guttatus. Evolution 73:1168–1181

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Maldonado E, Almeida D, Escalona T, Khan I, Vasconcelos V, Antunes A (2016) LMAP: lightweight multigene analyses in PAML. BMC Bioinformatics 17:354

    Article  PubMed  PubMed Central  Google Scholar 

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, Consortium I (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738

    Article  PubMed  PubMed Central  Google Scholar 

  • Marquis RJ, Ricklefs RE, Abdala-Roberts L (2012) Testing the low latitude/high defense hypothesis for broad-leaved tree species. Oecologia 169:811–820

    Article  PubMed  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Mittlebach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  Google Scholar 

  • Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388

    Article  Google Scholar 

  • Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 12:1305–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira X, Zas R, Sampedro L (2012) Genetic variation and phenotypic plasticity of nutrient re-allocation and increased fine root production as putative tolerance mechanisms inducible by methyl-jasmonate in pine trees. J Ecol 100:810–820

    Article  CAS  Google Scholar 

  • Moreira X, Mooney KA, Rasmann S, Petry WK, Carrillo-Gavilán A, Zas R, Sampedro L (2014) Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol Lett 17:537–546

    Article  PubMed  Google Scholar 

  • Moreira X, Abdala-Roberts L, Parra-Tabla V, Mooney KA (2015) Latitudinal variation in herbivory: influences of climatic drivers, herbivore identity, and natural enemies. Oikos 124:1444–1452

    Article  Google Scholar 

  • Moreira X, Petry WK, Mooney KA, Rasmann S, Abdala-Roberts L (2018a) Elevational gradients in plant defences and insect herbivory: recent advances in the field and prospects for future research. Ecography 41:1485–1496

    Article  Google Scholar 

  • Moreira X, Castagneyrol B, Abdala-Roberts L, Berny-Mier y Terán JC, BGH T, Bruun HH, Covelo F, Glauser G, Rasmann S, AJM T (2018b) Latitudinal variation in plant chemical defenses drives latitudinal patterns of leaf herbivory. Ecography 41:1124–1134

    Article  Google Scholar 

  • Nakamura M, Inari N, Hiura T (2014) Spatial variation in leaf traits and herbivore community within the beech canopy between two different latitudes. Arthropod Plant Interact 8:571–579

    Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand J-N, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialisation and plant resistance along elevation gradients. Ecol Evol 2:1818–1825

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellissier L, Roger A, Bilat J, Rasmann S (2014) High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography 37:950–959

    Article  Google Scholar 

  • Pellissier L, Moreira X, Danner H, Serrano M, Salamin N, van Dam NM, Rasmann S (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J Ecol 104:1116–1125

    Article  CAS  Google Scholar 

  • Pennings SC, Ho C-K, Salgado CS, Wieski K, Davé N, Kunza AE, Wason EL (2009) Latitudinal variation in herbivore pressure in Atlantic coast salt marshes. Ecology 90:183–195

    Article  PubMed  Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46

    Article  Google Scholar 

  • Rasmann S, Agrawal AA (2011) Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity, and induction following herbivory. Ecol Lett 14:476–483

    Article  PubMed  Google Scholar 

  • Rasmann S, Pellissier L, Alvarez N (2014a) The altitudinal niche breadth hypothesis in plant-insect interaction. Annu Plant Rev 47:339–359

    Article  CAS  Google Scholar 

  • Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014b) Climate-driven change in plant–insect interactions along elevation gradients. Funct Ecol 28:46–54

    Article  Google Scholar 

  • Rasmann S, Buri A, Gallot-Lavalee M, Joaquim J, Purcell J, Pellissier L (2014c) Differential allocation and deployment of direct and indirect defences of Vicia sepium along elevation gradients. J Ecol 102:930–938

    Article  Google Scholar 

  • Rasmann S, Chassin E, Bilat J, Glauser G, Reymond P (2015) Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. J Exp Bot 66:2527–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar D, Marquis RJ (2012) Herbivore pressure increases toward the equator. Proc Natl Acad Sci U S A 109:12616–12620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandring S, Riihimäki MA, Savolainen O, Agren J (2007) Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J Evol Biol 20:558–567

    Article  CAS  PubMed  Google Scholar 

  • Schemske DW (1984) Population structure and local selection in Impatiens pallida (Balsaminaceae), a selfing annual. Evolution 38:817–832

    Article  PubMed  Google Scholar 

  • Schemske DW, Horvitz CC (1989) Temporal variation on a floral character. Evolution 43:461–465

    Article  PubMed  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269

    Article  Google Scholar 

  • Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BS (2014) Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 31:1149–1165

    Article  CAS  PubMed  Google Scholar 

  • Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43:23–43

    Article  Google Scholar 

  • Siepielski AM, Di Battista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276

    Article  PubMed  Google Scholar 

  • Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes 9:901–911

    Article  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    Article  CAS  PubMed  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261–280

    Article  Google Scholar 

  • Thompson JN (2005) Coevolution: the geographic mosaic of coevolutionary arms races. Curr Biol 15:R992–R994

    Article  CAS  PubMed  Google Scholar 

  • Tiffin P, Moeller DA (2006) Molecular evolution of plant immune system genes. Trends Genet 22:662–670

    Article  CAS  PubMed  Google Scholar 

  • Tiffin P, Ross-Ibarra J (2014) Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol 29:673–680

    Article  PubMed  Google Scholar 

  • Toju H, Sota T (2006) Imbalance of predator and prey armament: geographic clines in phenotypic interface and natural selection. Am Nat 167:105–117

    Article  PubMed  Google Scholar 

  • Wang J, Ding J, Tan B, Robinson KM, Michelson IH, Johansson A, Nystedt B, Scofield DG, Nilsson O, Jansson S, Street NR, Ingvarsson PK (2018) A major locus controls local adaptation and adaptive life history variation in a perennial plant. Genome Biol 19:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weadick CJ, Chang BS (2012) Complex patterns of divergence among green-sensitive (RH2a) African cichlid opsins revealed by clade model analyses. BMC Evol Biol 12:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb AE, Walsh TA, O’Connell MJ (2017) VESPA: very large-scale evolutionary and selective pressure analyses. PeerJ Comp Sci 3:e118

    Article  Google Scholar 

  • Więski K, Pennings S (2014) Latitudinal variation in resistance and tolerance to herbivory of a salt marsh shrub. Ecography 37:763–769

    Article  Google Scholar 

  • Wise MJ, Rausher MD (2013) Evolution of resistance to a multiple-herbivore community: genetic correlations, diffuse coevolution, and constraints on the plant’s response to selection. Evolution 67:1767–1779

    Article  PubMed  Google Scholar 

  • Wright SD, Gray RD, Gardner RC (2003) Energy and the rate of evolution: inferences from plant rDNA substitution rates in the western Pacific. Evolution 57:2893–2898

    Article  PubMed  Google Scholar 

  • Wright S, Keeling J, Gillman L (2006) The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc Natl Acad Sci USA 103:7718–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 5:568–573

    Article  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  CAS  PubMed  Google Scholar 

  • Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA (2012) Natural enemies drive geographic variation in plant defenses. Science 338:116–119

    Article  PubMed  CAS  Google Scholar 

  • Zvereva EL, Kozlov MV (2019) Biases in studies of spatial patterns in insect herbivory. Ecology in press

    Google Scholar 

Download references

Acknowledgements

This research was funded by a Spanish National Research Grant (AGL2015-70748-R), a Regional Government of Galicia Grant (IN607D 2016/001), and the Ramon y Cajal Research Programme (RYC-2013-13230) to XM and by a CONACyT Grant (CB 2015-01-250925) to LAR.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carmona, D., Moreira, X., Abdala-Roberts, L. (2020). Latitudinal and Elevational Gradients in Plant Defences and Herbivory in Temperate Trees: Recent Findings, Underlying Drivers, and the Use of Genomic Tools for Uncovering Clinal Evolution. In: Núñez-Farfán, J., Valverde, P. (eds) Evolutionary Ecology of Plant-Herbivore Interaction. Springer, Cham. https://doi.org/10.1007/978-3-030-46012-9_18

Download citation

Publish with us

Policies and ethics