Skip to main content

Fungal Phytohormones: Plant Growth-Regulating Substances and Their Applications in Crop Productivity

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Hormonal homeostasis of host plant is altered on invasion of plant tissues by pathogenic and/or endophytic/symbiotic fungi. One of the well-known phenomena of this hormonal tweaking is through synthesis and secretion of phytohormone (PH) or PH-like compounds by diverse rhizo-fungal population including genera-both pathogenic and plant growth promoting (PGP) in action. These fungal-derived PHs (FPHs) can either mimic the PH’s physiological functions or can facilitate growth, invasion, and perpetuation of the fungal cells in or around the host plant tissues. However, the relevance and mechanism of action of the FPH for fungus itself are largely obscured due to the complexity of a multitude of interaction signals involved during production and secretion of FPH, while the fungus exhibits interactions with the host plant. This manuscript explores the possible role of FPH produced by PGP rhizosphere or endophytic fungal communities as effector molecules to manipulate the phytohormone homeostasis and harnessing the benefits in terms of improved growth and productivity of crop plants on application of FPHs. Further, it also dissects the physiological or biochemical relevance of FPHs for the fungal hyphae itself besides the host plant on event of positive or negative interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass MH (2017) In Vitro Antifungal Activity of Different Plant Hormones on the Growth and Toxicity of Nigrospora spp. on Date Palm (Phoenix dactylifera L.). Open Plant Sci J 10:10–20

    CAS  Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci 76:170–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588

    CAS  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Akhter W, Bhuiyan MKA, Sultana F, Hossain MM (2015) Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). C R Biol 338:21–28

    PubMed  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    PubMed  PubMed Central  Google Scholar 

  • Alberton D, Muller-Santos M, Brusamarello-Santos LCC, Valdameri G, Cordeiro FA, Yates MG, De Oliveira PF, De Souza EM (2013) Comparative proteomics analysis of the rice roots colonized by Herbaspirillum seropedicae strain SmR1 reveals induction of the methionine recycling in the plant host. J Proteome Res 12:4757–4768

    CAS  PubMed  Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular–arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58:371–374

    CAS  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    PubMed  PubMed Central  Google Scholar 

  • Andolfi A, Maddau L, Cimmino A, Linaldeddu BT, Basso S, Deidda A, Serra S, Evidente A (2014) Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry 103:145–153

    CAS  PubMed  Google Scholar 

  • Angra-Sharma R, Sharma DK (1999) Cytokinins in pathogenesis and disease resistance of Pyrenophora teres–barley and Dreschslera maydis–maize interactions during early stages of infection. Mycopathologia 148:87–95

    CAS  PubMed  Google Scholar 

  • Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    CAS  PubMed  Google Scholar 

  • Assante G, Merlini L, Nasini G (1977) (+)-Abscisic acid, a metabolite of the fungus Cercospora rosicola. Cell Mol Life Sci 33:1556–1557

    CAS  Google Scholar 

  • Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M (2015) Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Mycobiol 43:49–56

    Google Scholar 

  • Bano A, Ullah F, Nosheen A (2012) Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ 58:181–185

    CAS  Google Scholar 

  • Barker S, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    CAS  PubMed  Google Scholar 

  • Beardsell MF, Cohen D (1975) Relationships between leaf water status, abscisic acid levels, and stomatal resistance in maize and sorghum. Plant Physiol 56:207–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resis- tance in plants. Springer, New York, pp 225–258

    Google Scholar 

  • Beyrle H, Penningsfeld F, Hockf B (1991) The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. New phytol 117:665–672

    CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    CAS  PubMed  Google Scholar 

  • Bozcuk S (1981) Effect of kinetin and salinity on germination of tomato, barley and cotton seeds. Ann Bot 48:81–84

    CAS  Google Scholar 

  • Broekaert WF, Delauré SL, MFC DB, BPA C (2006) The role of ethylene in host–pathogen interactions. Annu Rev Phytopathol 44:393–416

    CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:1–14

    Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192

    CAS  Google Scholar 

  • Chague V, Danit L-V, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A (2006) Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus–plant interactions? Mol Plant–Microbe Interact 19:33–42

    CAS  PubMed  Google Scholar 

  • Chalutz E, Strahmann MA (1969) Induction of pisatin by ethylene. Pytopathology 59:1972

    CAS  Google Scholar 

  • Chanclud E, Morel JB (2016) Plant hormones: a fungal point of view. Mol Plant Pathol 17:1289–1297

    PubMed  PubMed Central  Google Scholar 

  • Chanclud E, Kisiala A, Emery NRJ, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLOS Pathog 12:e1005457

    PubMed  PubMed Central  Google Scholar 

  • Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal 8:790–803

    CAS  PubMed  Google Scholar 

  • Chaves FC, Gianfagna TJ (2006) Necrotrophic phase of Moniliophthora perniciosa causes salicylic acid accumulation in infected stems of cacao. Physiol Mol Plant Pathol 69:104–108

    CAS  Google Scholar 

  • Chini A, Cimmino A, Masi M, Reveglia P, Nocera P, Solano R, Evidente A (2018) The fungal phytotoxin lasiojasmonate A activates the plant jasmonic acid pathway. J Exp Bot 69:3095–3102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Choi D, Lee S, Ryu CM, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16:388–394

    CAS  PubMed  Google Scholar 

  • Claeys H, De Bodt S, Inzé D (2014) Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci 19:231–239

    Google Scholar 

  • Cohen BA, Amsellem Z, Maor R, Sharon A, Gressel J (2002) Transgenically enhanced expression of indole-3-acetic acid confers hypervirulence to plant pathogens. Phytopathology 92:590–596

    CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper SJ, Ashby AM (1998) Comparison of cytokinin and cytokinin-O- glucoside cleaving beta-glucosidase production in vitro by Venturia inaequalis and other phytopathogenic fungi with differing modes of nutrition in planta. Physiol Mol Plant Pathol 53:61–72

    CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  PubMed  Google Scholar 

  • Das A, Kamas S, Akhtar NS (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant Coleus forskohlii. Plant Signal Behav 7:1–10

    Google Scholar 

  • Dasilva EJ, Henriksson E, Henriksson LE (1974) Ethylene production by fungi. Plant Sci Lett 2:63–66

    CAS  Google Scholar 

  • De Vleesschauwer D, Xu J, Höfte M (2014) Making sense of hormone- mediated defense networking: from rice to Arabidopsis. Front Plant Sci 5:1–15

    Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debi BR, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162:507–515

    CAS  Google Scholar 

  • Dempsey DA, Klessig DF (2017) How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol 15:1–11

    Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    PubMed  PubMed Central  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K, Vermeulen J, Van Cleemput O, Boeckx P, Müller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

    CAS  Google Scholar 

  • Dhandhukia PC, Thakkar VR (2007) Standardization of growth and fermentation criteria of Lasiodiplodia theobromae for production of jasmonic acid. Afri J Biotechnol 6:707–712

    CAS  Google Scholar 

  • Dhandhukia PC, Thakkar VR (2008) Separation and quantitation of jasmonic acid using HPTLC. J Chromatogr Sci 46:320–324

    CAS  PubMed  Google Scholar 

  • Drüge U, Schonbeck F (1993) Effect of vesicular–arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J Plant Physiol 141:40–48

    Google Scholar 

  • Edwards HH (1983) Effect of kinetin, abscisic acid, and cations on host-parasite relations of barley inoculated with Erysiphe graminis f. sp. hordei. J Phytopathol 107:22–30

    CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:1–14

    Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol 61:964–976

    CAS  Google Scholar 

  • Eng F, Haroth S, Feussner K, Meldau D, Rekhter D, Ischebeck T, Brodhun F, Feussner I (2016) Optimized jasmonic acid production by Lasiodiplodia theobromae reveals formation of valuable plant secondary metabolites. PLoS One 11:1–18

    Google Scholar 

  • Eng F, Zienkiewicz K, Favela-Torres E, Feussner I (2018) Jasmonic acid biosynthesis by microorganisms: derivatives, first evidences on biochemical pathways and culture conditions for production. Peer J 6:e26655v1

    Google Scholar 

  • Esch H, Hundeshagen B, Schneider-Poetsch H, Bothe H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16

    CAS  Google Scholar 

  • Esser K, Bennett JW, Osiewacz HD (2002) In: Osiewacz HD (ed) The Mycota: industrial applications. Springer, Berlin

    Google Scholar 

  • Estrada-Rivera M, Rebolledo-Prudencio OG, Pérez-Robles DA, Rocha-Medina M, González-López M, Casas-Flores S (2019) Trichoderma Histone deacetylase HDA-2 modulates multiple responses in Arabidopsis. Plant physiol 179:1343–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier JP (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–292

    PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fässler E, Evangeloua MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907

    PubMed  Google Scholar 

  • Flaishman MA, Kolattukudy PE (1994) Timing of fungal invasion using host’s ripening hormone as a signal. Proc Natl Acad Sci USA 91:6579–6583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca S, Radhakrishnan D, Prasad K, Chini A (2017) Fungal production and manipulation of plant hormones. Curr Med Chem 25:253–267

    Google Scholar 

  • Fukuda H, Ogawa T, Tanase S (1993) Ethylene production by micro-organisms. Adv Microb Physiol 35:275–306

    CAS  PubMed  Google Scholar 

  • Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47:331–340

    CAS  Google Scholar 

  • Gomez CA, Arbona V, Jacas J, PrimoMillo E, Talon M (2002) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240

    Google Scholar 

  • Han X, Kahmann R (2019) Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front Plant Sci 10:822

    PubMed  PubMed Central  Google Scholar 

  • Haque M, Ilias GNM, Molla AH (2012) Impact of Trichoderma-enriched bio-fertilizer on the growth and yield of mustard (Brassica rapa L.) and Tomato (Solanum lycopersicon Mill). Agriculturists 10:109–119

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Hasan HA (2002) Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol Immunol Hung 49:105–118

    CAS  PubMed  Google Scholar 

  • Hirsch AM, Fang Y, Asad S, Kapulnik Y (1997) The role of phytohormones in plant–microbe symbioses. Plant Soil 194:171–184

    CAS  Google Scholar 

  • Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 135–191

    Google Scholar 

  • Hyakumachi M (1994) Plant-growth-promoting fungi from turfgrass rhizosphere with potential for disease suppression. Soil Microbe 44:53–68

    Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J Integr Plant Biol 49:1003–1015

    CAS  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    CAS  Google Scholar 

  • Isaac S (1992) Fungal-plant interactions. Chapman & Hall, London, pp 252–265

    Google Scholar 

  • Ishii T, Shrestha Y, Matsumoto I, Kadoya K (1996) Effect of ethylene on the growth of vesicular–arbuscular mycorrhizal fungi and on the mycorrhizal formation of trifoliate orange roots. J Jpn Soc Hortic Sci 65:525–529

    CAS  Google Scholar 

  • Ismail MH, Hussain A, Afzal Khan S, Iqbal A, Lee IJ (2019) Aspergillus flavus promoted the growth of soybean and sunflower seedlings at elevated temperature. Biomed Res Int 2019:1–13

    Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice– Magnaporthe grisea interaction. Mol Plant–Microbe Interact 23:791–798

    CAS  PubMed  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LSP, Shin-ichi I (2013) Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot 64:3829–3842

    CAS  PubMed  Google Scholar 

  • Jung J, Park C (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 6:1198–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia A, Singh J (2019) Plant-microbe interactions: applications for plant-growth promotion and in-situ agri-waste management. In: Varma A, Tripathi S, Prasad R (eds) Plant-microbes interface: plant-microbe interactions: state of art and structure and function. Springer, Berlin

    Google Scholar 

  • Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365

    CAS  PubMed  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    PubMed  PubMed Central  Google Scholar 

  • Kettner J, Dorffling K (1995) Biosynthesis and metabolism of abscisic-acid in tomato leaves infected with Botrytis cinerea. Planta 196:627–634

    CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    CAS  Google Scholar 

  • Khalmuratova I, Kim H, Nam YJ (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiology 43:373–383

    PubMed  PubMed Central  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2004) Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 82:37–42

    CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee IJ (2013) Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol 13:51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilaru A, Bailey BA, Hasenstein KH (2007) Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol Lett 274:238–244

    CAS  PubMed  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    CAS  PubMed  Google Scholar 

  • Kolattukudy PE, Rogers LM, Li D, Hwang CS, Flaishman MA (1995) Surface signaling in pathogenesis. Proc Natl Acad Sci 92:4080–4087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019a) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kovac M, Zel J (1995) The effect of aluminium on cytokinins in the mycelia of Amanita muscaria. J Plant Growth Regul 14:117–120

    CAS  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange MJP, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 3:281–290

    Google Scholar 

  • Laurans F, Pepin R, Gay G (2001) Fungal auxin overproduction affects the anatomy of Hebeloma cylindrosporumPinus pinaster ectomycorrhizas. Tree Physiol 21:533–540

    CAS  PubMed  Google Scholar 

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169:587–596

    CAS  PubMed  Google Scholar 

  • Lee BO (1961) Effect of kinetin on the fertility of some strains of Neurospora crassa. Nature 192:288–288

    Google Scholar 

  • Lee YC, Johnson JM, Chien CT, Sun C, Cai DG, Lou BG, Oelmuller R, Yeh KW (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microb Interact 24:421–431

    CAS  Google Scholar 

  • LeJohn HB, Stevenson RM (1973) Cytokinins and magnesium ions may control the flow of metabolites and calcium ions through fungal cell membranes. Biochim Biophys Res Commun 54:1061–1066

    CAS  Google Scholar 

  • Li A, Heath MC (1990) Effect of plant growth regulators on the interactions between bean plants and rust fungi non-pathogenic on beans. Physiol Mol Plant Pathol 37:245–254

    CAS  Google Scholar 

  • Li X, Cai J, Liu F, Dai T, Cao W, Jiang D (2014) Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring’s seedlings. J Agric Crop Sci 200:467–478

    CAS  Google Scholar 

  • Lockhart CL, Foryth FR, Eaves CA (1968) Effect of ethylene on development of Gloeosporium album in apple and on growth of the fungus culture. Can J Plant Sci 48:557–559

    CAS  Google Scholar 

  • Lozano JC (1972) Status of virus and mycoplasma like disease of cassava. In Proceedings of the IDRC/IIT A cassava mosaic workshop, International Institute of Tropical Agriculture, Ibadan, p 48

    Google Scholar 

  • Ludwig-Müller J, Güther M (2007) Auxins as signals in arbuscular mycorrhiza formation. Plant Signal Behav 2:194–196

    PubMed  PubMed Central  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of ga3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    CAS  Google Scholar 

  • Manjili FA, Sedghi M, Pessarakli M (2012) Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J Plant Nutr 35:1098–1111

    CAS  Google Scholar 

  • Maor R, Haskin S, Levi-kedmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70:3–6

    Google Scholar 

  • Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M (2019) Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci 10:423. https://doi.org/10.3389/fpls.2019.00423

  • Matheussen AM, Morgan PW, Frederiksen RA (1991) Implication of gibberellins in head smut (Sporisorium reilianum) of Sorghum bicolor. Plant Physiol 96:537–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra V (2005) Mycorrhiza: a premier biological tool for managing soil fertility Mycorrhiza: role and applications. Allied Publishers, New Delhi, pp 1–65

    Google Scholar 

  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715

    CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Miersch O, Gunther T, Fritsche W, Sembdner G (1993) Jasmonates from different fungal species. Nat Prod Lett 2:293–299

    CAS  Google Scholar 

  • Miersch O, Bohlmann H, Wasternack C (1999) Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry 50:517–523

    CAS  Google Scholar 

  • Mohapatra PK, Panigrahi R, Turner NC (2011) Physiology of spikelet development on the rice panicle: is manipulation of apical dominance crucial for grain yield improvement? Adv Agron 110:333–360

    CAS  Google Scholar 

  • Moosa A, Sahi ST, Khan SA, Malik AU (2019) Salicylic acid and jasmonic acid can suppress green and blue moulds of citrus fruit and induce the activity of polyphenol oxidase and peroxidase. Folia Hortic 31:195–204

    Google Scholar 

  • Mora-Herrera ME, Lopez-Delgado HA (2007) Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. Am J Potato Res 84:467–475

    CAS  Google Scholar 

  • Morrison EN, Emery RJN, Saville BJ (2015) Phytohormone involvement in the Ustilago maydisZea mays pathosystem: relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS One 10:e0130945

    PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Kawanabe Y, Takiyama E, Takahashi N, Murayama T (1978) Effects of auxin and gibberellin on conidial germination in Neurospora crassa. Plant Cell Physiol 19:705–709

    CAS  Google Scholar 

  • Nakamura T, Tomita K, Kawanabe Y, Murayama T (1982) Effects of auxin and gibberellin on conidial germination in Neurospora crassa II: “conidial density effect” and auxin. Plant Cell Physiol 23:1363–1369

    CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    CAS  PubMed  Google Scholar 

  • Nassimi Z, Taheri P (2017) Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Sci Tech 27:252–267

    Google Scholar 

  • Nayyar H, Bains TS, Kumar S (2005) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ Exp Bot 54:275–285

    CAS  Google Scholar 

  • Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of spermatophyta. Agriculture 5:918–970

    CAS  Google Scholar 

  • Norman SM, Bennett RD, Maier VP, Poling SM (1983) Cytokinins inhibit abscisic acid biosynthesis in Cercospora rosicola. Plant Sci Lett 28:255–263

    CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling, biosynthesis, catabolism, and response pathways. Plant Cell 14:561–580

    Google Scholar 

  • Ousley MA, Lynch JM, Whipps JM (1994) The effects of addition of Trichoderma inocula on flowering and shoot growth of bedding plants. Sci Hortic 59:147–155

    Google Scholar 

  • Panahirad S, Zaare-Nahandi F, Mohammadi N, Alizadeh-Salteh S, Safaie N (2014) Effects of salicylic acid on Aspergillus flavus infection and aflatoxin B1 accumulation in pistachio (Pistacia vera L.) fruit. J Sci Food Agric 94:1758–1763

    CAS  PubMed  Google Scholar 

  • Pegg GF (1981) The involvement of growth regulators in the diseased plant. In: Ayres PG (ed) Effects of disease on the physiology of the growing plant. Cambridge University Press, Cambridge, pp 149–177

    Google Scholar 

  • Pegg GF (1984) The role of growth regulators in plant disease. In: Wood RKS, Jellis GJ (eds) Plant diseases: infection, damage and loss. Blackwell, Oxford, pp 29–48

    Google Scholar 

  • Pegg GF, Cronshaw DK (1976) Ethylene production in tomato plants infected with Verticillium alboatrum. Physiol Plant Pathol 8:279–295

    Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110(16):6548–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758

    CAS  PubMed  Google Scholar 

  • Perner H, Schwarz D, Bruns C, Mäder P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    PubMed  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    CAS  PubMed  Google Scholar 

  • Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ (2018) Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol Plant 11:1427–1439

    CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Cambridge

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Cambridge

    Google Scholar 

  • Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9:339–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt D, Wiemken A, Boller T (1991) Induction of ethylene biosynthesis in compatible and incompatible interactions of soybean roots with Phytophthora megasperma f. sp. glycinea and its relation to phytoalexin accumulation. J Plant Physiol 138:394–399

    CAS  Google Scholar 

  • Rosas S, Soria R, Correa N, Abdala G (1998) Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol 38:1161–1168

    CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop Plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    CAS  PubMed  Google Scholar 

  • Salt SD, Tuzun S, Kuc J (1986) Effects of beta-ionone and abscisic acid on the growth of tobacco and resistance to blue mold - Mimicry of effects of stem infection by Peronospora tabacina Adam. Physiol Mol Plant Pathol 28:287–297

    CAS  Google Scholar 

  • Saville BJ, Leong SA (1992) The molecular biology of pathogenesis in Ustilago maydis. In: Genetic engineering. Springer, Boston, pp 139–162

    Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel KH (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    PubMed  Google Scholar 

  • Sharaf EF, Farrag AA (2004) Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici. Pol J Microbiol 53:111–116

    CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Hortic 176:1–10

    CAS  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Somjaipeng S, Medina A, Magan N (2016) Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme Microb Technol 90:69–75

    CAS  PubMed  Google Scholar 

  • Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr Opin Plant Biol 27:52–58

    CAS  PubMed  Google Scholar 

  • Spence CA, Lakshmanan V, Donofrio N, Bais HP (2015) Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Front Plant Sci 6:1–13

    Google Scholar 

  • Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spollen WG, Le Noble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava SN, Singh V, Awasthi, SK (2006) Trichoderma induced improvement in growth, yield and quality of sugarcane. Sugar Tech 8:166–169

    Google Scholar 

  • Strzelczyk E, Kampert M, Pachlewski R (1994) The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza 4:193–196

    CAS  Google Scholar 

  • Subban K, Subramani R, Madambakkam Srinivasan VP, Johnpaul M, Chelliah J (2019) Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS One 14:1–17

    Google Scholar 

  • Tomita K, Murayama T, Nakamura T (1984) Effects of auxin and gibberellin on elongation of young hyphae in Neurospora crassa. Plant Cell Physiol 25:355–358

    CAS  Google Scholar 

  • Tsavkelova EA, Klimova SI, Cherdyntseva TA, Netrusov AI (2006) Hormones and hormone-like substances of microorganisms: a review. Prikl Biokhim Mikrobiol 42:261–268

    CAS  PubMed  Google Scholar 

  • Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A (2012) Identification and functional characterization of indole-3- acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet Biol 49:48–57

    CAS  PubMed  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 63:1–9

    Google Scholar 

  • Van Bockhaven J, Spíchal L, Novák O, Strnad M, Asano T, Kikuchi S, Höfte M, De Vleesschauwer D (2015a) Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773

    PubMed  Google Scholar 

  • Van Bockhaven J, Spíchal L, Novák O, Strnad M, Asano T, Kikuchi S, Höfte M, De Vleesschauwer D (2015b) Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773

    PubMed  Google Scholar 

  • Van de Poel B, Cooper ED, Van Der Straeten D, Chang C, Delwiche CF (2016) Transcriptome profiling of the green alga Spirogyra pratensis (charophyta) suggests an ancestral role for ethylene in cell wall metabolism, photosynthesis and abiotic stress responses. Plant Physiol 172:533–545

    PubMed  PubMed Central  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Vu TT, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resis- tance against Radopholus similis on banana. Nematology 8:847–852

    Google Scholar 

  • Wakelin SA, Gupta VV, Harvey PR, Ryder MH (2007) The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Can J Microbiol 53:106–115

    CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS 102(38):13386–13391

    Google Scholar 

  • Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6:494–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172

    CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287

    CAS  Google Scholar 

  • Ward EWB, Cahill DM, Bhattacharyya MK (1989) Abscisic acid suppression of phenylalanine ammonia lyase activity and messengerrna, and resistance of soybeans to Phytophthora megasperma f. sp glycinea. Plant Physiol 91:23–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T (2014) Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biol Control 74:82–88

    Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the coordination of responses to stress in plants. Plant Cell Environ 25:195–210

    CAS  PubMed  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    CAS  PubMed  Google Scholar 

  • Xu J, Audenaert K, Hofte M, De Vleesschauwer D (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PloS one 8:e67413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN (2019) Fungal white biotechnology: conclusion and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer, Cham, pp 491–498. https://doi.org/10.1007/978-3-030-25506-0_20

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017b) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. vol1: Diversity and enzymes perspectives, Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. vol 2: Perspective for value-added products and environments, Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. vol 3: Perspective for sustainable environments, Springer, Cham

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Yan C, Xie D (2015) Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J 13:1233–1240

    PubMed  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    CAS  Google Scholar 

  • Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    CAS  PubMed  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed borne diseases of rice. Pest Manag Sci 68:60–66

    CAS  PubMed  Google Scholar 

  • Yusuf M, Hayat S, Alyemeni M, Fariduddin Q, Ahmad A (2013) Salicylic acid: physiological roles in plants. In: Hayat S, Ahmad AAM (eds) Salicylic acid. Springer, Dordrecht, pp 15–30

    Google Scholar 

  • Zhang Q, Xiao S (2015) Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate. Front Plant Sci 6:1–7

    Google Scholar 

  • Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52:653–669

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhao Z, Tang J, Li Z, Li Z, Chen D, Lin W (2014) A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PLoS One 9:e89140

    PubMed  PubMed Central  Google Scholar 

  • Zouchová Z, Wurst M, Nerud F, Musílek V (1982) Metabolism of aromatic acids in the antibiotic-producing basidiomycete Oudemansiella mucida. Folia Microbiol (Praha) 27:446–449

    Google Scholar 

  • Zsogon A, Lambais MR, Benedito VA, Figueira AV, Peres LEP (2008) Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Scientia Agricola 65:259–267

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, A., Kalia, A. (2020). Fungal Phytohormones: Plant Growth-Regulating Substances and Their Applications in Crop Productivity. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_7

Download citation

Publish with us

Policies and ethics