Skip to main content

Phosphate-Solubilizing Fungi: Current Perspective, Mechanisms and Potential Agricultural Applications

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Phosphate is one of the vital macronutrient required for the plant growth and development. Phosphorus (P) bioavailability in the plant can be supplemented by the phosphate-solubilizing fungi (PSF) in the soil. Most of the PSF belongs to the genus Aspergillus, Penicillium, and Fusarium. Few researchers have developed different strategies for the efficient phosphate solubilization which further directly used by the plant for its growth and development. Researcher’s findings suggest that PSF is effective in plant growth promotion which occurs adjacent to the plant root system and provides the basic availability of phosphorus (P) to the plant. PSF have plant growth promoting properties such as phytohormones production and phosphate solubilization, which enhanced plant growth and yield and also used in phytoremediation of different chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany MT, Alawlaqi MM (2018) Molecular identification of thermo-halotolerant Aspergillus terreus and its correlation in sustainable agriculture. Bioresources 13:8012–8023

    Google Scholar 

  • Adnan M, Alshammari E, Ashraf SA et al (2018) Physiological and molecular characterization of biosurfactant producing endophytic fungi Xylaria regalis from the cones of Thuja plicata as a potent plant growth promoter with its potential application. Biomed Res Int 3:1–11

    Google Scholar 

  • Agnes MDC, Sivaraj R, Venckatesh R (2012) Decolorization of reactive violet – 2RL dye by Aspergillus Flavus and Aspergillus Fumigatus from textile sludge. Int Res J Environ Sci 1:8–12

    Google Scholar 

  • Agnolucci M, Battini F, Cristani C et al (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fert Soils 51:379–389

    CAS  Google Scholar 

  • Akintokun AK, Akande GA, Akintokun PO, Popoola TOS, Babalola AO (2007) Solubilization of insoluble phosphate by organic acid producing fungi isolated from Nigerian soil. Int J Soil Sci 2:301–307

    CAS  Google Scholar 

  • Ali M, Khalil NM, Abd El-Ghany MN (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afri J Microbiol Res 6:3783–3790

    CAS  Google Scholar 

  • Asaf S, Hamayun M, Khan AL (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23

    PubMed  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    CAS  Google Scholar 

  • Banik B, Dey K (1983) Utilizing aluminium phosphate as a sole phosphate source. Zentralblatt Microbiol 138:17–23

    CAS  Google Scholar 

  • Bilal L, Asaf S, Hamayun M (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127

    CAS  Google Scholar 

  • Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int J Pharm Bio Sci 6:333–343

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiß M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457

    CAS  PubMed  Google Scholar 

  • Devi P, Packialakshmi N (2018) Screening of phosphate solubilizing fungi from Cardiospermum halicacabum roots and its bioactive compounds. Pharm Innov 6:290–296

    Google Scholar 

  • Dolatabad HK, Javan-Nikkhah M, Shier WT (2017) Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycol Prog 16:777–790

    Google Scholar 

  • Efthymiou A, Jensen B, Jakobsen I (2018) The roles of mycorrhiza and Penicillium inoculants in phosphorus uptake by biochar-amended wheat. Soil Biol Biochem 127:168–177

    CAS  Google Scholar 

  • Fenice M, Selbman L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162

    CAS  Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franz A, Burgstaller W, Schinner F (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl Environ Microbiol 57:769–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    PubMed  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publisher, New Delhi, p 176

    Google Scholar 

  • Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164

    PubMed  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Mining by microbe. Bio Technol 11:1250–1254

    CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Helen JBP, Graeme K, Ritz D, Fordyce A, Geoffrey GM (2002) Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol Ecol 40:65–71

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Google Scholar 

  • Isbelia RL, Bernier RR, Simard P, Tanguay G, Antoun H (1999) Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV induced mutants. FEMS Microbiol Ecol 28:291–295

    Google Scholar 

  • Jain R, Saxena J, Sharma V (2012) Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Ann Microbiol 62:725–735

    CAS  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran L-SP, Shin-ichi I (2013) Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot 64:3829–3842

    CAS  PubMed  Google Scholar 

  • Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH and temperature tolerant phosphate solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93

    CAS  PubMed  Google Scholar 

  • Kamaraj M, Manjudevi M, Sivaraj R (2012) Degradation of bisphenol a by Aspergillus sp. isolated from tannery industry effluent. Int J Pharm Life Sci 3:1585–1589

    Google Scholar 

  • Khan MR, Khan SM (2002) Effect of root-dip treatment with certain phosphate-solubilizing microorganisms on the Fusarium wilt of tomato. Bioresour Technol 85:213–215

    CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan AL, Hamayun M, Kim YH (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    CAS  PubMed  Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: Importance in crop production. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Heidelberg, pp 237–263

    Google Scholar 

  • Khan MA, Ullah I, Waqas M et al (2018) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis 77:9–21

    Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2019a) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019b) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019c) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting Rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019d) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilising Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leitao AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadevamurthy M, Thriveni MC, Sidappa M, Mythrashree SR, Amruthesh KN (2016) Isolation of phosphate solubilizing fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants. J Appl Biol Biotechnol 4(06):022–026

    Google Scholar 

  • Mahdi SS, Hassan GI, Hussain A, Rasool FU (2011) Phosphorus availability issue—its fixation and role of phosphate solubilizing bacteria in phosphate solubilization. Res J Agri Sci 2:174–179

    Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Google Scholar 

  • Malviya J, Singh K, Joshi V (2011) Effect of phosphate solubilizing fungi on growth and nutrient uptake of ground nut (Arachis hypogaea) plants. Adv Biores 2:110–113

    CAS  Google Scholar 

  • Mayerhofer MS, Kernaghan G, Harper KA (2012) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    PubMed  Google Scholar 

  • Mehana TA, Wahid OAA (2002) Associative effect of phosphate dissolving fungi, rhizobium and phosphate fertilizer on some soil properties, yield components and the phosphorus and nitrogen concentration and uptake by Vicia faba L. under field conditions. Pak J Biol Sci 5:1226–1231

    Google Scholar 

  • Mehta P, Walia A, Chauhan A, Kulshrestha S, Shirkot CK (2013) Phosphate solubilization and plant growth promoting potential by stress tolerant Bacillus sp. isolated from rhizosphere of apple orchards in trans Himalayan region of Himachal Pradesh. Ann Appl Biol 163:430–443

    CAS  Google Scholar 

  • Nath R, Sharma GD, Barooah M (2015) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl Ecol Environ Res 13:877–891

    Google Scholar 

  • Nenwani V, Doshi P, Saha T et al (2010) Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J Yeast Fungal Res 1:9–14

    CAS  Google Scholar 

  • Neubert K, Mendgen K, Brinkmann H, Wirsel SGR (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72:1118–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngwene B, Boukail S, Söllner L (2016) Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant Soil 405:231–241

    CAS  Google Scholar 

  • Nutaratat P, Srisuk N, Arunrattiyakorn P (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694

    CAS  PubMed  Google Scholar 

  • Osorio NW, Habte M (2013) Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in an Oxisol fertilized with rock phosphate. Botany 91:274–281

    CAS  Google Scholar 

  • Pany S, Mishra S, Gupta N (2018) Evaluation of native rhizospheric and phosphate solubilizing microbes for growth and development of Pongamia pinnata under nursery condition. Adv Biores 9:92–101

    CAS  Google Scholar 

  • Park J, Nb B, Megharaja M, Naidua R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829

    CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

    CAS  Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afri J Biotechnol 5:348–350

    Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sec B Biol Sci. https://doi.org/10.1007/s40011-020-01168-0

  • Rastegari AA, Yadav AN, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Cambridge

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Cambridge

    Google Scholar 

  • Resende MI, Jakoby IC, dos Santos LC et al (2014) Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum brasiliense Cambess). Afr J Microbiol Res 8:2616–2623

    CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV induced mutants. FEMS Micobiol Ecol 28:281–290

    CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    CAS  Google Scholar 

  • Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54:408–417

    CAS  PubMed  Google Scholar 

  • Saber K, Nahla L, Ahmed D, Chedly A (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Develop 25:389–393

    Google Scholar 

  • Sarbadhikary SB, Mandal NC (2018) Elevation of plant growth parameters in two solanaceous crops with the application of endophytic fungus. Ind J Agric Res 52:424–428

    Google Scholar 

  • Satyaprakash M, Nikitha T, Reddi EUB et al (2017) Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol Appl Sci 6:2133–2144

    CAS  Google Scholar 

  • Scervino JM, Mesa MP, Della Mónica I (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fert Soils 46:755–763

    CAS  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752

    PubMed  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

  • Shin W, Ryu J, Kim Y, Yang J, Madhaiyan M, Sa T (2006) Phosphate solubilization and growth promotion of maize (Zea mays L.) by the rhizosphere soil fungus Penicillium oxalicum. 18th World congress of soil science. July 9–15, Philadelphia, PA

    Google Scholar 

  • Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47:30–34

    CAS  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Souchie EL, Azcón R, Barea JM, Saggin-Júnior OJ, EMR S (2006) Phosphate solubilization and synergism between P-solubilizing and arbuscular mycorrhizal fungi. Pesquisa Agropecuária Brasileira 41:1405–1411

    Google Scholar 

  • Sparks LD (1999) Advances in agronomy, vol 69. Academic, London, p 12

    Google Scholar 

  • Suri VK, Choudhary AK, Chander G et al (2011) Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic Alfisol. Commun Soil Sci Plant Anal 42:2265–2273

    CAS  Google Scholar 

  • Tallapragada P, Seshachala U (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turk J Biol 36:25–35

    CAS  Google Scholar 

  • Thakur D, Kaushal R, Shyam V (2014) Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants—a review. Agric Rev 35:159–171

    Google Scholar 

  • Varma A, Singh A, Sudha S, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica—an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Mycota IX. Springer, Berlin, pp 123–150

    Google Scholar 

  • Vassilev N, Fenice M, Federici F (1996) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol Tech 20:585–588

    Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertility Soils 30:460–468

    CAS  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Verma S, Varma A, Rexer K, Hassel A, Kost G, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. Et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Vitorino C, Bessa LA, Carvalho LG, Silva FG (2016) Growth promotion mediated by endophytic fungi in cloned seedlings of Eucalyptus grandis x Eucalyptus urophylla hybrids. Afr J Biotechnol 15:2729–2738

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soil 40:36–43

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Chromium reduction, plant growth promoting potentials and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    CAS  PubMed  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Whitelaw MA, Harden JT, Helyar RT (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochemi 31:655–665

    CAS  Google Scholar 

  • Wu M, Wei Q, Xu L et al (2018) Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil 432:333–344

    CAS  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017a) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017b) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B et al (2017c) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. https://doi.org/10.19080/IJESNR.2017.03.555601

    Article  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N et al (2018b) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R et al (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume-1: Diversity and enzymes perspectives, Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020a) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020b) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Yin Z, Fan B, Roberts DP et al (2017) Enhancement of maize growth and alteration of the rhizosphere microbial community by phosphate-solubilizing fungus P93. J Agric Biotechnol 2:1–10

    Google Scholar 

  • Yousefi AA, Khavazi K, Moezi AA et al (2011) Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl Sci J 15:1310–1318

    CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M et al (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 23–50

    Google Scholar 

  • Zanardini E, Negri M, Boschin G, D’Agostina A, Valle A, Arnoldi A, Sorlini C (2002) Biodegradation of Chlorsulfuron and Metsulfuron-methyl by Aspergillus niger. Sci World J 2:1369–1374

    CAS  Google Scholar 

  • Zhang D, Duine JA, Kawai F (2002) The extremely high Al resistance of Penicillium janthinellum F13 is not caused by internal or external sequestration of Al. Biometals 15:167–174

    CAS  PubMed  Google Scholar 

  • Zhang H, Wu X, Li G et al (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543–554

    CAS  Google Scholar 

  • Zhang L, Feng G, Declerck S (2018) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12:2339–2351

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Teja, E.S., Mathur, V., Kumari, R. (2020). Phosphate-Solubilizing Fungi: Current Perspective, Mechanisms and Potential Agricultural Applications. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_6

Download citation

Publish with us

Policies and ethics