Skip to main content

Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

  • 735 Accesses

Abstract

Plants and microbes are the important components of ecosystem, and their interactions help in regulating the biogeochemical cycle in the environment. Plant-associated microorganisms include bacteria, fungi, viruses, and some algae. These microbes use host plants for their growth, colonization, and proliferation; however, they offer a variety of benefits to the hosts. These microbes are not harmful to the plants; however, they secrete some beneficial substances which may help in plant growth promotion, resistance to pathogenic microbes, removal of harmful contaminants, and production of secondary metabolites in relationship called mutualism that benefit to each other, also called positive reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash P, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    CAS  PubMed  Google Scholar 

  • Akram MS, Shahid M, Tahir M, Mehmood F, Ijaz M (2017) Plant-microbe interactions: current perspectives of mechanisms behind symbiotic and pathogenic associations. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer International Publishing AG, Singapore, pp 97–196. https://doi.org/10.1007/978-981-10-5813-4

    Chapter  Google Scholar 

  • Anuar EN, Nulit R, Idris AS (2015) Growth promoting effects of endophytic fungus Phlebia GanoEF3 on oil palm (Elaeis guineensis) seedlings. Int J Agric Biol 17:135–141

    Google Scholar 

  • Aravind R, Kumar A, Eapen SJ, Ramana KV (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64

    Google Scholar 

  • Arora J, Ramawat KG (2017) An introduction to endophytes. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, sustainable development and biodiversity 15. Springer International Publishing AG, Cham, pp 1–16. https://doi.org/10.1007/978-3-31966541-2_1

    Chapter  Google Scholar 

  • Badawi F, Biomy AM, Desoky AH (2011) Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann Agric Sci 56:17–25

    Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant– microbe interactions. Curr Opin Biotechnol 20:642–650

    CAS  PubMed  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    CAS  Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    CAS  PubMed  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berardo C, Bulai IM, Baptista P, Gomes T, Venturino E (2018) Modeling the endophytic fungus Epicoccum nigrum action to fight the “olive knot” disease caused by Pseudomonas savastanoi pv.savastanoi (Psv) bacteria in Olea europea L. trees. In: Mondaini RP (ed) Trends in biomathematics: modeling, optimization and computational problems. Springer International Publishing AG, Cham, pp 189–207

    Google Scholar 

  • Bhandari P, Garg N (2017) Arbuscular mycorrhizal symbiosis: a promising approach for imparting abiotic stress tolerance in crop plants. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer International Publishing AG, Singapore, pp 377–402. https://doi.org/10.1007/978-981-10-5813-4

    Chapter  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    CAS  PubMed  Google Scholar 

  • Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13:315–347

    Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612

    Google Scholar 

  • Campbell N (1995) Prokaryotes and the origins of metabolic diversity. In: Brady EB (ed) 5th. The Benjamin/Cummings Publishing Company, pp 502–519

    Google Scholar 

  • Chhipa H, Deshmukh SK (2019) Fungal endophytes: rising tools in sustainable agriculture production. In: Jha S (ed) Endophytes and secondary metabolites. Springer International Publishing AG, Cham, pp 1–24

    Google Scholar 

  • Chowdhary K, Kaushik N, Coloma AG, Raimundo CM (2012) Endophytic fungi and their metabolites isolated from Indian medicinal plant. Phytochem Rev 11:467–485. https://doi.org/10.1007/s11101-012-9264

    Article  CAS  Google Scholar 

  • Clawson ML, Benson DR, Resch SC, Stephens DW, Silvester WB (1997) Typical Frankia infects actinorhizal plants exotic to New Zealand. N Z J Bot 35:361–367

    Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    CAS  Google Scholar 

  • Ek-Ramos MJ, Zhou W, Valencia CU, Antwi JB, Kalns LL, Morgan GD, Kerns DL, Sword GA (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS One 8:e66049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelisti E, Rey T, Schornack S (2014) Cross-interference of plant development and plant-microbe interactions. Curr Opin Plant Biol 20:118–126

    CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24:197–208

    CAS  PubMed  Google Scholar 

  • Fávaro LC, Sebastianes FL, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7:e36826

    PubMed  PubMed Central  Google Scholar 

  • Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bucking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656

    CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid and inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493

    CAS  PubMed  Google Scholar 

  • Fouda AH, El-Din Hassan S, Eid AM, El-Din Ewais E (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss). Ann Agric Sci 60:95–104

    Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    CAS  PubMed  Google Scholar 

  • Garg N, Baher N (2013) Role of arbuscular mycorrhizal symbiosis in proline biosynthesis and metabolism of Cicer arietinum L. (chickpea) genotypes under salt stress. J Plant Growth Regul 32:767–778

    Google Scholar 

  • Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosyst 148:609–621

    Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. Rev Agron Sustain Dev 30:581–599

    CAS  Google Scholar 

  • Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Mill sp.) genotypes. Mycorrhiza 25:165–180

    PubMed  Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93–106

    Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz M, Prasad M (eds) Salt stress in plants. Springer, New York, pp 301–354

    Google Scholar 

  • Hallmann J, Quadt Hallmann A, Mahaffe WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195

    Google Scholar 

  • Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G (2013) Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chem Eur J 19:15556–15564

    CAS  PubMed  Google Scholar 

  • Heydari A, Fattahi H, Zamanizadeh HR, Zadeh NH, Naraghi L (2004) Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in greenhouse. Appl Entomol Phytopathol 72:51–68

    Google Scholar 

  • Hilszczańska D (2016) Endophytes-characteristics and possibilities of application in forest management. Leśne Prace Badawcze 77:276–282

    Google Scholar 

  • Hirsch AM (2004) Plant–microbe symbioses: a continuum from commensalism to parasitism. Symbiosis 37:345–363

    CAS  Google Scholar 

  • Jain P, Pundir RK (2017) Potential role of endophytes in sustainable agriculture-recent developments and future prospects. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, sustainable development and biodiversity 15. Springer International Publishing AG, Cham, pp 145–160. https://doi.org/10.1007/978-3-319-66541-2_1

    Chapter  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kaul S, Gupta S, Ahmed M, Dhar M (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505

    CAS  Google Scholar 

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:1–12

    Google Scholar 

  • Kim HY, Ghoi GJ, Lee HB, Lee SW, Lim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim JC (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44:332–337

    PubMed  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–233

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, et al. (2019a) Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, vol1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, et al. (2019b) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. vol 2: Perspective for value-added products and environments, Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8:e56202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399

    CAS  Google Scholar 

  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3. Biotech 6:60

    Google Scholar 

  • Lata H, Li XC, Silva B, Moares RM, Halda-Alija L (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359

    CAS  Google Scholar 

  • Lata R, Chowdhury S, Gond S, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Appl Microbiol 66:268–276

    CAS  Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Google Scholar 

  • Leung T, Poulin R (2008) Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie Milieu 58:107

    Google Scholar 

  • Lins MRCR, Fontes JM, Vasconcelos NM, Santos DMS, Ferreira OE, Azevedo JC, Araujo JM, Lima GMS (2014) Plant growth-promoting potential of endophytic bacteria isolated from cashew leaves. Afr J Biotechnol 13:3360–3365

    Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp. an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    CAS  Google Scholar 

  • Machungo C, Losenge T, Kahangi E, Coyne D, Dubois T, Kimenju J (2009) Effect of endophytic Fusarium oxysporum on growth of tissue-cultured Banana plants. Afr J Hort Sci 2:160–167

    Google Scholar 

  • Manaf HH, Zayed MS (2015) Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Ann Agric Sci 60:219–226

    Google Scholar 

  • Mbai FN, Magiri EN, Matiru VN, Nganga J, Nyambati VCS (2013) Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati rice. Am Int J Contemp Res 3:25–40

    Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    CAS  Google Scholar 

  • Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA et al (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944

    CAS  PubMed  Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation partial characterization and the effect of plant growth-promoting bacteria (PGPB) on micro propagated sugarcane in vitro. Plant Soil 237:47–54

    CAS  Google Scholar 

  • Mishra RR, Sarma VV (2018) Current perspectives of endophytic Fungi in sustainable development. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspectives. Springer Nature, Singapore, pp 553–584. https://doi.org/10.1007/978-981-13-0393-7

    Chapter  Google Scholar 

  • Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Morton JB, Bebtivenga SP (1994) Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups. Plant Soil 159:47–59

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    PubMed  Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296

    CAS  PubMed  Google Scholar 

  • Naveed M, Qureshi MA, Zahir ZA, Hussain MB, Sessitsch A, Mitter B (2015) L-tryptophan- dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann Microbiol 65:1391–1389

    Google Scholar 

  • Ngamau N, Matiru A, Viviene N, Tani A, Muthuri CW (2012) Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr J Microbiol Res 6:6414–6422

    Google Scholar 

  • O’Hara GW (1998) The role of nitrogen fixation in crop production. J Crop Prod 1:115–138

    Google Scholar 

  • O’Hara GW (2001) Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust J Exp Agric 41:417–433

    Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    CAS  PubMed  Google Scholar 

  • Parisi PAG, Grimoldi AA, Omacini M (2014) Endophytic fungi of grasses protects other plants from aphid herbivory. Fungal Ecol 9:61–64

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    CAS  PubMed  Google Scholar 

  • Paul NC, Deng JX, Sang HK, Choi YP, Yu SH (2012) Distribution and antifungal activity of endophytic fungi in different growth stages of chilli pepper (Capsicum annuum L.) in Korea. Plant Pathol J 28:10–19

    CAS  Google Scholar 

  • Paul NC, Ji SH, Deng JX, Yu SH (2013) Assemblages of endophytic bacteria in chilli pepper (Capsicum annuum L.) and their antifungal activity against phytopathogens in vitro. Plant Omics 6:441–448

    Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    CAS  PubMed  Google Scholar 

  • Prasad K (2005) Arbuscular mycorrhizal fungal occurrence in non-cultivated disturbed and non-fertile land of Bettiahraj, Bettiah, Bihar. Mycorrhiza News 16:12–14

    Google Scholar 

  • Prasad K (2017) Biology, diversity and promising role of mycorrhizal endophytes for green technology. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, sustainable development and biodiversity 15. Springer International Publishing AG, Cham, pp 267–301. https://doi.org/10.1007/978-3-31966541-2_1

    Chapter  Google Scholar 

  • Prasad MP, Dagar S (2014) Identification and characterization of endophytic bacteria from fruits like avocado and black grapes. Int J Curr Microbiol App Sci 3:937–947

    Google Scholar 

  • Prasad K, Gautam SP (2005) Effect of inoculation of arbuscular mycorrhizal fungus (Glomus macrocarpum) on the growth and nutrients uptake of Dendrocalamus strictus (Roxb.) ess under field conditions. Anusandhan 1:53–62

    Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L). World J Microbiol Biotechnol 5:47–55

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi. vol 1: Diversity and enzymes perspectives, Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V, Suman A, Dhaliwal HS (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sec B Biol Sci doi. https://doi.org/10.1007/s40011-020-01168-0

  • Rastegari AA, Yadav AN, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Cambridge

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Cambridge

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    CAS  PubMed  Google Scholar 

  • Richardson DM, Allsopp N, D’antonios CM, Milton SJ, Rejmanek M (2000) Plant invasions – the role of mutualisms. Biol Rev 75:65–93

    CAS  PubMed  Google Scholar 

  • Roberts E, Lindow S (2014) Loline alkaloid production by fungal endophytes of fescue species select for particular epiphytic bacterial microflora. ISME J 8:359–368

    CAS  PubMed  Google Scholar 

  • Romao-Dumaresq A, Araujo WL, Talbot NJ, Thornton CR (2012) RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7:e47888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudgers JA, Clay K (2008) An invasive plant–fungal mutualism reduces arthropod diversity. Ecol Lett 11:831–840

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    CAS  PubMed  Google Scholar 

  • Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high- resolution on-line water content sensors. Plant Soil 342:459–468

    CAS  Google Scholar 

  • Sahu PK, Gupta A, Lavanya G, Bakade R, Singh DP (2017) Bacterial endophytes: potential candidates for plant growth promotion. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer International Publishing AG, Singapore, pp 611–632. https://doi.org/10.1007/978-981-10-5813-4

    Chapter  Google Scholar 

  • Saikkonen K, Faeth SH, Heander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343

    Google Scholar 

  • Sang MK, Shrestha A, Kim D, Park K, Pak CH, Kim KD (2013) Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol J 29:154–167

    PubMed  PubMed Central  Google Scholar 

  • Schafer P, Khatabi B, Kogel KH (2007) Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiol Lett 275:1–7

    PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Selim SHM, Zayed MS (2017) Microbial interactions and plant growth. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer International Publishing AG, Singapore, pp 1–15. https://doi.org/10.1007/978-981-10-5813-4

    Chapter  Google Scholar 

  • Sengupta A, Gunri SK, Biswas T (2017) Microbial interactions and plant health. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer International Publishing AG, Singapore, pp 61–84. https://doi.org/10.1007/978-981-10-5813-4

    Chapter  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, et al. (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in White biotechnology through fungi, vol 1. Diversity and enzymes perspectives, Springer International Publishing, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

  • Shehata HR, Lyons EM, Jordan KS, Raizada MN (2016) Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa. J Appl Microbiol 120:756–769

    CAS  PubMed  Google Scholar 

  • Shentu X, Zhan X, Ma Z, Yu X, Zhang C (2014) Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiol 45:248–254

    PubMed  PubMed Central  Google Scholar 

  • Sivakumar PV, Thamizhiniyan P (2012) Enhancement in growth and yield of tomato by using AM fungi and Azospirillum. Int J Environ Biol 2:137–141

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Sobolev VS, Orner VA, Arias RS (2013) Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions. Plant Soil 37:367–376

    Google Scholar 

  • Souja A, Cruz JC, Sousa NR, Procopio AR, Silva GF (2014) Endophytic bacteria from banana cultivars and their antifungal activity. Genet Mol Res 13:8661–8670

    Google Scholar 

  • Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603

    Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440

    CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Thompson JP (1994) Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes long-fallow disorder of linseed (Linum usitatissimum L.) by improving P and Zn uptake. Soil Biol Biochem 26:1133–1143

    Google Scholar 

  • Tiquia SM, Richard TL, Honeyman MS (2002) Carbon, nutrient, and mass loss during composting. Nutr Cycl Agroecosyst 62:15–24

    CAS  Google Scholar 

  • UmaMaheswari T, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol App Sci 2:127–136

    Google Scholar 

  • Van Rhijn P, Vanderleyden J (1995) The rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    PubMed  PubMed Central  Google Scholar 

  • Varma A, Verma S, Sudha, Sahay NS, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant growth promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    Google Scholar 

  • Varma PK, Uppala S, Pavuluri K, Chandra KJ, Chapala MM, Kumar KVK (2017) Endophytes: role and functions in crop health. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer International Publishing AG, Singapore, pp 291–310. https://doi.org/10.1007/978-981-10-5813-4

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009

    Google Scholar 

  • Waller F, Baltruschat H, Achatz B, Becker K, Fischer M, Fodor J, Heier T, Hückelhoven R, Neumann C (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Xing Y, Wang JXY, Wang G (2014) The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take all. Can J Microbiol 60:533–540

    CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indole-acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287

    CAS  Google Scholar 

  • Webster G, Jain V, Davey MR, Gough C, Vasse J, Denarie J, Cocking EC (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373–383

    CAS  Google Scholar 

  • Wu QS, Zou YN (2010) Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci Hortic 125:289–293

    Google Scholar 

  • Wu QS, Zou YN, He XH (2013) Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Sci Hortic 160:366–374

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN (2019a) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    CAS  Google Scholar 

  • Yadav AN (2019b) Fungal white biotechnology: conclusion and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. vol 3: Perspective for sustainable environments, Springer International Publishing, Cham, pp 491–498. https://doi.org/10.1007/978-3-030-25506-0_20

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Cambridge, pp 305–332

    Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. San Diego, Elsevier, pp 13–41. doi:https://doi.org/10.1016/B978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. Vol 1: Diversity and enzymes perspectives. Springer international publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Vol 2: Perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. Vol 3: Perspective for sustainable environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V et al (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of potential to promote rice growth. Plant Soil 194:99–114

    CAS  Google Scholar 

  • Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186:45–52

    CAS  Google Scholar 

  • Zabalgogeazcoa I (2008) Review: fungal endophytes and their interaction with plant pathogens. Span J Agric Res 6:138–146

    Google Scholar 

  • Zakaria L, Yaakop AS, Salleh B, Zakaria M (2010) Endophytic fungi from paddy. Trop Life Sci Res 21:101–107

    PubMed  PubMed Central  Google Scholar 

  • Zayed MS, Hassanein M, Esa NH, Abdallah M (2013) Productivity of pepper crop (Capsicum annuum L.) as affected by organic fertilizer, soil solarization, and endomycorrhizae. Ann Agric Sci 58:131–137

    Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    CAS  PubMed  Google Scholar 

  • Zhang X, Shen A, Wang Q, Chen Y (2012) Identification and nitrogen fixation effects of symbiotic Frankia isolated from Casuarina spp. in Zhejiang, China. Afr J Biotechnol 11:4022–4029

    CAS  Google Scholar 

  • Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediation 15:51–64

    CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang C, Zhou W, Li W, Chu L, Yan J (2014) Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. J Plant Interact 9:585–591

    Google Scholar 

  • Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nouh, F.A.A., Abo Nahas, H.H., Abdel-Azeem, A.M. (2020). Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_1

Download citation

Publish with us

Policies and ethics