Skip to main content

Cannabinoids in Neurologic Conditions

  • Chapter
  • First Online:
Cannabis in Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Cannabis and Cannabinoids for the Treatment of Epilepsy

  1. Russo EB. Cannabis and epilepsy: an ancient treatment returns to the fore. Epilepsy Behav. 2017;70:292–7.

    PubMed  Google Scholar 

  2. Szaflarski JP, Bebin EM. Cannabis, cannabidiol, and epilepsy--from receptors to clinical response. Epilepsy Behav. 2014;41:277–82.

    PubMed  Google Scholar 

  3. Maa E, Figi P. The case for medical marijuana in epilepsy. Epilepsia. 2014;55:783–6.

    PubMed  Google Scholar 

  4. Cohen PA, Sharfstein J. The opportunity of CBD - reforming the law. N Engl J Med. 2019;381:297.

    PubMed  Google Scholar 

  5. Mead A. The legal status of cannabis (marijuana) and cannabidiol (CBD) under U.S. law. Epilepsy Behav. 2017;70:288–91.

    PubMed  Google Scholar 

  6. Yang YT, Szaflarski JP. The US Food and Drug Administration’s Authorization of the first cannabis-derived pharmaceutical: are we out of the haze? JAMA Neurol. 2018;76:135.

    Google Scholar 

  7. Gaston TE, Szaflarski JP. Cannabis for the treatment of epilepsy: an update. Curr Neurol Neurosci Rep. 2018;18:73.

    PubMed  Google Scholar 

  8. O’Brien TJ, Berkovic SF, French JA, Messenheimer J, Gutterman D. Transdermal cannabidiol (CBD) gel for the treatment of focal epilepsy in adults. Annual Meeting of the American Epilepsy Society; 2018.

    Google Scholar 

  9. Wheless JW, Dlugos D, Miller I, et al. Pharmacokinetics and tolerability of multiple doses of pharmaceutical-grade synthetic cannabidiol in pediatric patients with treatment-resistant epilepsy. CNS Drugs. 2019;33:593–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Szaflarski JP. The highs and lows of the endocannabinoid system-another piece to the epilepsy puzzle? Epilepsy Curr. 2018;18:315–7.

    PubMed  PubMed Central  Google Scholar 

  11. Pacher P, Kunos G. Modulating the endocannabinoid system in human health and disease--successes and failures. FEBS J. 2013;280:1918–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaston TE, Friedman D. Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy Behav. 2017;70:313–8.

    PubMed  Google Scholar 

  13. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199–215.

    CAS  PubMed  Google Scholar 

  14. Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther. 2003;307:129–37.

    CAS  PubMed  Google Scholar 

  15. Wallace MJ, Martin BR, DeLorenzo RJ. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol. 2002;452:295–301.

    CAS  PubMed  Google Scholar 

  16. Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol. 2001;428:51–7.

    CAS  PubMed  Google Scholar 

  17. McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Delta(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172:737–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Perucca E. Cannabinoids in the treatment of epilepsy: hard evidence at last? J Epilepsy Res. 2017;7:61–76.

    PubMed  PubMed Central  Google Scholar 

  19. Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol. 2007;150:613–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosenberg EC, Patra PH, Whalley BJ. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy Behav. 2017;70:319–27.

    PubMed  PubMed Central  Google Scholar 

  21. Cleeren E, Casteels C, Goffin K, et al. Positron emission tomography imaging of cerebral glucose metabolism and type 1 cannabinoid receptor availability during temporal lobe epileptogenesis in the amygdala kindling model in rhesus monkeys. Epilepsia. 2018;59:959–70.

    CAS  PubMed  Google Scholar 

  22. Nichol K, Stott C, Jones N, Gray R, Bazelot M, Whalley BJ. The proposed multimodal mechanism of action of cannabidiol (CBD) in epilepsy: modulation of intracellular calcium and adenosine signalling. In: Annual meeting of the American Epilepsy Society. Philadelphia; 2018.

    Google Scholar 

  23. Bisogno T, Hanus L, De Petrocellis L, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134:845–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vilela LR, Lima IV, Kunsch EB, et al. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav. 2017;75:29–35.

    PubMed  Google Scholar 

  25. Naziroglu M. TRPV1 channel: a potential drug target for treating epilepsy. Curr Neuropharmacol. 2015;13:239–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ryberg E, Larsson N, Sjogren S, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hurst K, Badgley C, Ellsworth T, et al. A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus. 2017;27:985–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A. 2017;114:11229–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. During MJ, Spencer DD. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol. 1992;32:618–24.

    CAS  PubMed  Google Scholar 

  30. Sebastiao AM, Ribeiro JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci. 2000;21:341–6.

    CAS  PubMed  Google Scholar 

  31. Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain. 2016;139:2164–81.

    PubMed  PubMed Central  Google Scholar 

  32. Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem. 2008;283:16124–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Devinsky O, Cilio MR, Cross H, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rimmerman N, Ben-Hail D, Porat Z, et al. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death Dis. 2013;4:e949.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kozela E, Juknat A, Vogel Z. Modulation of astrocyte activity by cannabidiol, a nonpsychoactive cannabinoid. Int J Mol Sci. 2017;18:E1669.

    PubMed  Google Scholar 

  36. Pelz MC, Schoolcraft KD, Larson C, Spring MG, Lopez HH. Assessing the role of serotonergic receptors in cannabidiol’s anticonvulsant efficacy. Epilepsy Behav. 2017;73:111–8.

    PubMed  Google Scholar 

  37. Ben-Shabat S, Fride E, Sheskin T, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol. 1998;353:23–31.

    CAS  PubMed  Google Scholar 

  38. Russo EB. The case for the entourage effect and conventional breeding of clinical cannabis: no "strain" no gain. Front Plant Sci. 2018;9:1969.

    PubMed  Google Scholar 

  39. McPartland JM, Russo EB. Cannabis and cannabis extracts. J Cannabis Ther. 2001;1:103–32.

    CAS  Google Scholar 

  40. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol. 2011;163:1344–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Espay AJ, Norris MM, Eliassen JC, et al. Placebo effect of medication cost in Parkinson disease: a randomized double-blind study. Neurology. 2015;84:794–802.

    PubMed  PubMed Central  Google Scholar 

  42. Gloss D, Vickrey B. Cannabinoids for epilepsy. Cochrane Database Syst Rev. 2014;3:CD009270.

    Google Scholar 

  43. Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav. 2015;45:49–52.

    PubMed  Google Scholar 

  44. Sulak D, Saneto R, Goldstein B. The current status of artisanal cannabis for the treatment of epilepsy in the United States. Epilepsy Behav. 2017;70:328–33.

    PubMed  Google Scholar 

  45. Pamplona FA, da Silva LR, Coan AC. Potential clinical benefits of CBD-rich cannabis extracts over purified CBD in treatment-resistant epilepsy: observational data meta-analysis. Front Neurol. 2018;9:759.

    PubMed  PubMed Central  Google Scholar 

  46. Treat L, Chapman KE, Colborn KL, Knupp KG. Duration of use of oral cannabis extract in a cohort of pediatric epilepsy patients. Epilepsia. 2017;58:123–7.

    CAS  PubMed  Google Scholar 

  47. Hausman-Kedem M, Menascu S, Kramer U. Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents - an observational, longitudinal study. Brain and Development. 2018;40:544–51.

    PubMed  Google Scholar 

  48. Tzadok M, Uliel-Siboni S, Linder I, et al. CBD-enriched medical cannabis for intractable pediatric epilepsy: the current Israeli experience. Seizure. 2016;35:41–4.

    PubMed  Google Scholar 

  49. Szaflarski JP, Bebin EM, Cutter G, et al. Cannabidiol improves frequency and severity of seizures and reduces adverse events in an open-label add-on prospective study. Epilepsy Behav. 2018;87:131.

    PubMed  Google Scholar 

  50. Porcari GS, Fu C, Doll ED, Carter EG, Carson RP. Efficacy of artisanal preparations of cannabidiol for the treatment of epilepsy: practical experiences in a tertiary medical center. Epilepsy Behav. 2018;80:240–6.

    PubMed  Google Scholar 

  51. Neubauer D, Perkovic Benedik M, Osredkar D. Cannabidiol for treatment of refractory childhood epilepsies: experience from a single tertiary epilepsy center in Slovenia. Epilepsy Behav. 2018;81:79–85.

    PubMed  Google Scholar 

  52. Pietrafusa N, Ferretti A, Trivisano M, et al. Purified cannabidiol for treatment of refractory epilepsies in pediatric patients with developmental and epileptic encephalopathy. Paediatr Drugs. 2019;21:283.

    PubMed  Google Scholar 

  53. Hussain SA, Zhou R, Jacobson C, et al. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: a potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy Behav. 2015;47:138–41.

    PubMed  Google Scholar 

  54. Suraev A, Lintzeris N, Stuart J, et al. Composition and use of cannabis extracts for childhood epilepsy in the Australian community. Sci Rep. 2018;8:10154.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Suraev AS, Todd L, Bowen MT, et al. An Australian nationwide survey on medicinal cannabis use for epilepsy: history of antiepileptic drug treatment predicts medicinal cannabis use. Epilepsy Behav. 2017;70:334–40.

    PubMed  Google Scholar 

  56. Vandrey R, Raber JC, Raber ME, Douglass B, Miller C, Bonn-Miller MO. Cannabinoid dose and label accuracy in edible medical cannabis products. JAMA. 2015;313:2491–3.

    CAS  PubMed  Google Scholar 

  57. Aguirre-Velazquez CG. Report from a survey of parents regarding the use of cannabidiol (medicinal cannabis) in Mexican children with refractory epilepsy. Neurol Res Int. 2017;2017:2985729.

    PubMed  PubMed Central  Google Scholar 

  58. Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 2016;15:270–8.

    CAS  PubMed  Google Scholar 

  59. Szaflarski JP, Bebin EM, Comi AM, et al. Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: expanded access program results. Epilepsia. 2018;59:1540–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Laux LC, Bebin EM, Checketts D, et al. Long-term safety and efficacy of cannabidiol in children and adults with treatment resistant Lennox-Gastaut syndrome or Dravet syndrome: expanded access program results. Epilepsy Res. 2019;154:13–20.

    CAS  PubMed  Google Scholar 

  61. Hess EJ, Moody KA, Geffrey AL, et al. Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia. 2016;57:1617–24.

    CAS  PubMed  Google Scholar 

  62. Sands TT, Rahdari S, Oldham MS, Caminha Nunes E, Tilton N, Cilio MR. Long-term safety, tolerability, and efficacy of cannabidiol in children with refractory epilepsy: results from an expanded access program in the US. CNS Drugs. 2019;33:47–60.

    CAS  PubMed  Google Scholar 

  63. Szaflarski JP, Hernando K, Bebin EM, et al. Higher cannabidiol plasma levels are associated with better seizure response following treatment with a pharmaceutical grade cannabidiol. Epilepsy Behav. 2019;95:131–6.

    PubMed  Google Scholar 

  64. Gaston TE, Bebin EM, Cutter G, et al. Drug–drug interactions with cannabidiol (CBD) appear to have no effect on treatment response in an open-label expanded access Program. Epilepsy Behav. 2019;98:201–6.

    PubMed  Google Scholar 

  65. Devinsky O, Verducci C, Thiele EA, et al. Open-label use of highly purified CBD (Epidiolex(R)) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav. 2018;86:131–7.

    PubMed  Google Scholar 

  66. Gofshteyn JS, Wilfong A, Devinsky O, et al. Cannabidiol as a potential treatment for febrile infection-related epilepsy syndrome (fires) in the acute and chronic phases. J Child Neurol. 2017;32:35–40.

    PubMed  Google Scholar 

  67. McCoy B, Wang L, Zak M, et al. A prospective open-label trial of CBD/THC cannabis oil in Dravet syndrome. Ann Clin Transl Neurol. 2018;5:1077.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cilio MR, Wheless JW, Parikh N, Miller I. Long-term safety of pharmaceutical cannabidiol oral solution as adjunctive treatment for pediatric patients with treatment-resistant epilepsy. AES Annual Meeting; 2018.

    Google Scholar 

  69. Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376:2011–20.

    CAS  PubMed  Google Scholar 

  70. Devinsky O, Patel AD, Thiele EA, et al. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90:e1204–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the Lennox-Gastaut syndrome. N Engl J Med. 2018;378:1888–97.

    CAS  PubMed  Google Scholar 

  72. Hussain SA, et al. Synthetic pharmaceutical grade cannabidiol for treatment of refractory infantile spasms: a multicenter phase-2 study. Epilepsy Behav. 2020;102:106826.

    Google Scholar 

  73. Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. London: Lancet; 2018.

    Google Scholar 

  74. Miziak B, Walczak A, Szponar J, Pluta R, Czuczwar SJ. Drug-drug interactions between antiepileptics and cannabinoids. Expert Opin Drug Metab Toxicol. 2019;15:407–15.

    CAS  PubMed  Google Scholar 

  75. Morrison G, Crockett J, Blakey G, Sommerville K. A phase 1, open-label, pharmacokinetic trial to investigate possible drug-drug interactions between clobazam, stiripentol, or valproate and cannabidiol in healthy subjects. Clin Pharmacol Drug Dev. 2019;8:1009.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Szaflarski JP, Gidal G, Patsalos P, VanLandingham K, Critchley D, Morrison G. Drug-drug interaction studies with coadministration of cannabidiol and clobazam, valproate, stiripentol, or midazolam in healthy volunteers and adults with epilepsy. In: Annual meeting of the American Academy of Neurology. Philadelphia; 2019.

    Google Scholar 

  77. Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56:1246–51.

    CAS  PubMed  Google Scholar 

  78. Jiang R, Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet. 2013;28:332–8.

    CAS  PubMed  Google Scholar 

  79. Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP, Program UC. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58:1586–92.

    CAS  PubMed  Google Scholar 

  80. Klotz KA, Hirsch M, Heers M, Schulze-Bonhage A, Jacobs J. Effects of cannabidiol on brivaracetam plasma levels. Epilepsia. 2019;60:e74–7.

    CAS  PubMed  Google Scholar 

  81. Damkier P, Lassen D, Christensen MMH, Madsen KG, Hellfritzsch M, Pottegard A. Interaction between warfarin and cannabis. Basic Clin Pharmacol Toxicol. 2019;124:28–31.

    CAS  PubMed  Google Scholar 

  82. Grayson L, Vines B, Nichol K, Szaflarski JP, Program UC. An interaction between warfarin and cannabidiol, a case report. Epilepsy Behav Case Rep. 2018;9:10–1.

    PubMed  Google Scholar 

  83. Leino AD, Emoto C, Fukuda T, Privitera M, Vinks AA, Alloway RR. Evidence of a clinically significant drug-drug interaction between cannabidiol and tacrolimus. Am J Transplant. 2019;19:2944.

    CAS  PubMed  Google Scholar 

  84. Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20:14451–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Birnbaum AK, Karanam A, Marino SE, et al. Food effect on pharmacokinetics of cannabidiol oral capsules in adult patients with refractory epilepsy. Epilepsia. 2019;60:1586.

    CAS  PubMed  Google Scholar 

  86. Paudel KS, Hammell DC, Agu RU, Valiveti S, Stinchcomb AL. Cannabidiol bioavailability after nasal and transdermal application: effect of permeation enhancers. Drug Dev Ind Pharm. 2010;36:1088–97.

    CAS  PubMed  Google Scholar 

  87. Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs. 2018;32:1053–67.

    CAS  PubMed  PubMed Central  Google Scholar 

Multiple Sclerosis and Cannabis – Benefits, Risks, and Special Considerations

  1. Check WA. Marijuana may lessen spasticity of MS. JAMA. 1979;241(23):2476.

    CAS  PubMed  Google Scholar 

  2. National Academies of Sciences, Engineering, and Medicine. The health effects of cannabis and cannabinoids: current state of evidence and recommendations for research. Washington, D.C.: The National Academies Press; 2017.

    Google Scholar 

  3. Yadav V, Bever C, Bowen J, Bowling A, Weinstock-Guttman B, Cameron M, et al. Summary of evidence-based guideline: complementary and alternative medicine in multiple sclerosis: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2014;82(12):1083–92.

    PubMed  PubMed Central  Google Scholar 

  4. Koppel BS, Brust JC, Fife T, Bronstein J, Youssof S, Gronseth G, et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the guideline development Subcommittee of the American Academy of neurology. Neurology. 2014;82(17):1556–63.

    PubMed  PubMed Central  Google Scholar 

  5. Torres-Moreno MC, Papaseit E, Torrens M, Farré M. Assessment of efficacy and tolerability of medicinal cannabinoids in patients with multiple sclerosis: a systematic review and meta-analysis. JAMA Netw Open. 2018;1(6):e183485.

    PubMed  PubMed Central  Google Scholar 

  6. Rice J, Cameron M. Cannabinoids for treatment of MS symptoms: state of the evidence. Curr Neurol Neurosci Rep. 2018;18(8):50.

    PubMed  Google Scholar 

  7. Russo EB. History of cannabis and its preparations in saga, science, and sobriquet. Chem Biodivers. 2007;4(8):1614–48.

    CAS  PubMed  Google Scholar 

  8. Anon. 33 legal medical marijuana states and DC. Available from: https://medicalmarijuana.procon.org/view.resource.php?resourceID=000881&gclid=EAIaIQobChMI-aSByovl4wIV3__jBx3DtQXnEAAYASAAEgJIAfD_BwE. Accessed 2 Aug 2019.

  9. Gupta S, Fellows K, Weinstock-Guttman B, Hagemeier J, Zivadinov R, Ramanathan M. Marijuana use by patients with multiple sclerosis. Int J MS Care. 2019;21(2):57–62.

    PubMed  PubMed Central  Google Scholar 

  10. Weinkle L, Domen CH, Shelton I, Sillau S, Nair K, Alvarez E. Exploring cannabis use by patients with multiple sclerosis in a state where cannabis is legal. Mult Scler Relat Disord. 2019;27:383–90.

    PubMed  Google Scholar 

  11. Haug NA, Kieschnick D, Sottile JE, Babson KA, Vandrey R, Bonn-Miller MO. Training and practices of cannabis dispensary staff. Cannabis Cannabinoid Res. 2016;1(1):244–51.

    PubMed  PubMed Central  Google Scholar 

  12. Evanoff AB, Quan T, Dufault C, Awad M, Bierut LJ. Physicians-in-training are not prepared to prescribe medical marijuana. Drug Alcohol Depend. 2017;180:151–5.

    PubMed  PubMed Central  Google Scholar 

  13. Brooks E, Gundersen DC, Flynn E, Brooks-Russell A, Bull S. The clinical implications of legalizing marijuana: are physician and non-physician providers prepared? Addict Behav. 2017;72:1–7.

    PubMed  Google Scholar 

  14. Ziemianski D, Capler R, Tekanoff R, Lacasse A, Luconi F, Ware MA. Cannabis in medicine: a national educational needs assessment among Canadian physicians. BMC Med Educ. 2015;15:52.

    PubMed  PubMed Central  Google Scholar 

  15. Balneaves LG, Alraja A, Ziemianski D, McCuaig F, Ware M. A national needs assessment of Canadian nurse practitioners regarding cannabis for therapeutic purposes. Cannabis Cannabinoid Res. 2018;3(1):66–73.

    PubMed  PubMed Central  Google Scholar 

  16. Benarroch EE. Synaptic effects of cannabinoids: complexity, behavioral effects, and potential clinical implications. Neurology. 2014;83(21):1958–67.

    PubMed  Google Scholar 

  17. Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting TRP channels. Front Mol Neurosci. 2018;11:487.

    CAS  PubMed  Google Scholar 

  18. Baker D, Pryce G, Visintin C, Sisay S, Bondarenko AI, Vanessa Ho WS, et al. Big conductance calcium-activated potassium channel openers control spasticity without sedation. Br J Pharmacol. 2017;174(16):2662–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Giacoppo S, Mazzon E. Can cannabinoids be a potential therapeutic tool in amyotrophic lateral sclerosis. Neural Regen Res. 2016;11(12):1896–9.

    PubMed  PubMed Central  Google Scholar 

  20. Pryce G, Baker D. Potential control of multiple sclerosis by cannabis and the endocannabinoid system. CNS Neurol Disord Drug Targets. 2012;11(5):624–41.

    CAS  PubMed  Google Scholar 

  21. Ball S, Vickery J, Hobart J, Wright D, Green C, Shearer J, et al. The cannabinoid use in progressive inflammatory brain disease (CUPID) trial: a randomised double-blind placebo-controlled parallel-group multicentre trial and economic evaluation of cannabinoids to slow progression in multiple sclerosis. Health Technol Assess. 2015;19(12).:vii-viii, xxv-xxxi,:1–187.

    Google Scholar 

  22. Faraone SV. Interpreting estimates of treatment effects: implications for managed care. P T. 2008;33(12):700–11.

    PubMed  PubMed Central  Google Scholar 

  23. Food and Drug Administration (FDA). Epidiolex full prescribing information. Available from: www.accessdata.fda.gov/drugsatfda_docs/label/2018/210365lbl.pdf. Accessed 12 Aug 2019.

  24. Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA. 2015;313(24):2456–73.

    CAS  PubMed  Google Scholar 

  25. Singhal AB, Hajj-Ali RA, Topcuoglu MA, Fok J, Bena J, Yang D, et al. Reversible cerebral vasoconstriction syndromes: analysis of 139 cases. Arch Neurol. 2011;68(8):1005–12.

    PubMed  Google Scholar 

  26. Wolff V, Jouanjus E. Strokes are possible complications of cannabinoids use. Epil Behav. 2017;70(Pt B):355–63.

    Google Scholar 

  27. Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol. 2012;11(10):906–17.

    PubMed  Google Scholar 

  28. Jensen J, Leonard J, Salottolo K, McCarthy K, Wagner J, Bar-Or D. The epidemiology of reversible cerebral vasoconstriction syndrome in patients at a Colorado comprehensive stroke Center. J Vasc Interv Neurol. 2018;10(1):32–8.

    PubMed  PubMed Central  Google Scholar 

  29. Wolff V, Ducros A. Reversible cerebral vasoconstriction syndrome without typical thunderclap headache. Headache. 2016;56(4):674–87.

    PubMed  Google Scholar 

  30. Mawet J. Avoidance of steroids in the reversible cerebral vasoconstriction syndrome. Neurology. 2017;88(3):224–5.

    PubMed  Google Scholar 

  31. Kunchok A, Castley HC, Aldous L, Hawke SH, Torzillo E, Parker GD, et al. Fatal reversible cerebral vasoconstriction syndrome. J Neurol Sci. 2018;385:146–50.

    PubMed  Google Scholar 

  32. Belliston S, Sundararajan J, Hammond N, Newell K, Lynch S. Reversible cerebral vasoconstriction syndrome in association with fingolimod use. Int J Neurosci. 2017;127(9):831–4.

    CAS  PubMed  Google Scholar 

  33. Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55(6):791–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Benbadis SR, Sanchez-Ramos J, Bozorg A, Giarratano M, Kalidas K, Katzin L, et al. Medical marijuana in neurology. Expert Rev Neurother. 2014;14(12):1453–65.

    CAS  PubMed  Google Scholar 

  35. Pavisian B, MacIntosh BJ, Szilagyi G, Staines RW, O’Connor P, Feinstein A. Effects of cannabis on cognition in patients with MS: a psychometric and MRI study. Neurology. 2014;82(21):1879–87.

    PubMed  PubMed Central  Google Scholar 

  36. Feinstein A, Meza C, Stefan C, Staines RW. Coming off cannabis: a cognitive and magnetic resonance imaging study in patients with multiple sclerosis. Brain. 2019;142(9):2800–12.

    PubMed  Google Scholar 

  37. Bosker WM, Karschner EL, Lee D, Goodwin RS, Hirvonen J, Innis RB, et al. Psychomotor function in chronic daily cannabis smokers during sustained abstinence. PLoS One. 2013;8(1):e53127.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Busardò FP, Pellegrini M, Klein J, di Luca NM. Neurocognitive correlates in driving under the influence of cannabis. CNS Neurol Disord Drug Targets. 2017;16(5):534–40.

    PubMed  Google Scholar 

  39. Goyal H, Awad HH, Ghali JK. Role of cannabis in cardiovascular disorders. J Thorac Dis. 2017;9(7):2079–92.

    PubMed  PubMed Central  Google Scholar 

  40. Camilleri M. Cannabinoids and gastrointestinal motility: pharmacology, clinical effects, and potential therapeutics in humans. Neurogastroenterol Motil. 2018;30(9):e13370.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gundersen TD, Jørgensen N, Andersson AM, Bang AK, Nordkap L, Skakkebæk NE, et al. Association between use of marijuana and male reproductive hormones and semen quality: a study among 1,215 healthy young men. Am J Epidemiol. 2015;182(6):473–81.

    PubMed  Google Scholar 

  42. Marrie RA, Miller A, Sormani MP, Thompson A, Waubant E, Trojano M, et al. Recommendations for observational studies of comorbidity in multiple sclerosis. Neurology. 2016;86(15):1446–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Feinstein A, Pavisian B. Multiple sclerosis and suicide. Mult Scler. 2017;23(7):923–7.

    PubMed  Google Scholar 

  44. Brown JD, Winterstein AG. Potential adverse drug events and drug-drug interactions with medical and consumer cannabidiol (CBD) use. J Clin Med. 2019;8(7):E989.

    PubMed  Google Scholar 

  45. Alsherbiny MA, Li CG. Medicinal cannabis-potential drug interactions. Medicines (Basel). 2018;6(1):E3.

    Google Scholar 

  46. Bouquié R, Deslandes G, Mazaré H, Cogné M, Mahé J, Grégoire M, et al. Cannabis and anticancer drugs: societal usage and expected pharmacological interactions - a review. Fundam Clin Pharmacol. 2018;32(5):462–84.

    PubMed  Google Scholar 

  47. Rae-Grant A, Day GS, Marrie RA, Rabinstein A, Cree BAC, Gronseth GS, et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of neurology. Neurology. 2018;90(17):777–88.

    PubMed  Google Scholar 

  48. Kis E, Nagy T, Jani M, Molnár E, Jánossy J, Ujhellyi O, et al. Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: implications for drug resistance. Ann Rheum Dis. 2009;68(7):1201–7.

    CAS  PubMed  Google Scholar 

  49. Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A. 2006;103(20):7895–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Food and Drug Administration (FDA). Siponimod full prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209884s000lbl.pdf. Accessed 20 Aug 19.

  51. Russo EB. Current therapeutic cannabis controversies and clinical trial design issues. Front Pharmacol. 2016;7:309.

    PubMed  PubMed Central  Google Scholar 

  52. Raber JC, Elzinga S, Kaplan C. Understanding dabs: contamination concerns of cannabis concentrates and cannabinoid transfer during the act of dabbing. J Toxicol Sci. 2015;40(6):797–803.

    PubMed  Google Scholar 

  53. Pizzorno J. What should we tell our patients about marijuana. Integr Med (Encinitas). 2016;15(6):8–12.

    Google Scholar 

  54. Perrine CG, Pickens CM, Boehmer TK, King BA, Jones CM, DeSisto CL, et al. Characteristics of a multistate outbreak of lung injury associated with E-cigarette use, or vaping - United States, 2019. MMWR Morb Mortal Wkly Rep. 2019;68(39):860–4.

    PubMed  PubMed Central  Google Scholar 

  55. French CE, Coope CM, McGuinness LA, Beck CR, Newitt S, Ahyow L, et al. Cannabis use and the risk of tuberculosis: a systematic review. BMC Public Health. 2019;19(1):1006.

    PubMed  PubMed Central  Google Scholar 

  56. Thompson GR, Tuscano JM, Dennis M, Singapuri A, Libertini S, Gaudino R, et al. A microbiome assessment of medical marijuana. Clin Microbiol Infect. 2017;23(4):269–70.

    PubMed  Google Scholar 

  57. McKernan K, Spangler J, Zhang L, Tadigotla V, Helbert Y, Foss T, et al. Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade cannabis flowers. F1000Res. 2015;4:1422.

    PubMed  Google Scholar 

  58. McKernan K, Spangler J, Helbert Y, Lynch RC, Devitt-Lee A, Zhang L, et al. Metagenomic analysis of medicinal cannabis samples. F1000Res. 2016;5:2471.

    PubMed  PubMed Central  Google Scholar 

  59. Russo CV, Saccà F, Paternoster M, Buonomo AR, Gentile I, Scotto R, et al. Post-mortem diagnosis of invasive pulmonary aspergillosis after alemtuzumab treatment for multiple sclerosis. Mult Scler. 2020;26:123. https://doi.org/10.1177/1352458518813110.

    Article  PubMed  Google Scholar 

  60. Chong I, Wang KY, Lincoln CM. Cryptococcal meningitis in a multiple sclerosis patient treated with Fingolimod: a case report and review of imaging findings. Clin Imaging. 2019;54:53–6.

    PubMed  Google Scholar 

  61. Gundacker ND, Jordan SJ, Jones BA, Drwiega JC, Pappas PG. Acute cryptococcal immune reconstitution inflammatory syndrome in a patient on natalizumab. Open Forum Infect Dis. 2016;3(1):ofw038.

    PubMed  PubMed Central  Google Scholar 

  62. Walters KM, Fisher GG, Tenney L. An overview of health and safety in the Colorado cannabis industry. Am J Ind Med. 2018;61(6):451–61.

    PubMed  Google Scholar 

The Evidence for Cannabis Use in Movement Disorders

  1. John CM, Brust DF, Narayanaswami P, Patel A, Song S, Youssof S, Stock A. AAN position: use of medical marijuana for neurologic disorders. 2018.

    Google Scholar 

  2. National Academies of Sciences E, Medicine, Health, Medicine D, Board on Population H, Public Health P, et al. The National Academies Collection: reports funded by National Institutes of Health. The health effects of cannabis and cannabinoids: the current state of evidence and recommendations for research. Washington, D.C.: National Academies Press. (US) Copyright 2017 by the National Academy of Sciences. All rights reserved; 2017.

    Google Scholar 

  3. GBD 2016 Neurology Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2018;17(11):939–53.

    Google Scholar 

  4. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord. 2013;28(3):311–8.

    PubMed  Google Scholar 

  5. Venderova K, Ruzicka E, Vorisek V, Visnovsky P. Survey on cannabis use in Parkinson’s disease: subjective improvement of motor symptoms. Mov Dis. 2004;19(9):1102–6.

    Google Scholar 

  6. Finseth TA, Hedeman JL, Brown RP 2nd, Johnson KI, Binder MS, Kluger BM. Self-reported efficacy of cannabis and other complementary medicine modalities by Parkinson’s disease patients in Colorado. Evid Based Complement Alternat Med. 2015;2015:874849.

    PubMed  PubMed Central  Google Scholar 

  7. Balash Y, Bar-Lev Schleider L, Korczyn AD, Shabtai H, Knaani J, Rosenberg A, et al. Medical cannabis in Parkinson disease: real-life patients’ experience. Clin Neuropharmacol. 2017;40(6):268–72.

    PubMed  Google Scholar 

  8. Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R, Fernandez-Ruiz J. Symptom-relieving and neuroprotective effects of the phytocannabinoid Delta(9)-THCV in animal models of Parkinson’s disease. Br J Pharmacol. 2011;163(7):1495–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gutierrez-Valdez AL, Garcia-Ruiz R, Anaya-Martinez V, Torres-Esquivel C, Espinosa-Villanueva J, Reynoso-Erazo L, et al. The combination of oral L-DOPA/rimonabant for effective dyskinesia treatment and cytological preservation in a rat model of Parkinson’s disease and L-DOPA-induced dyskinesia. Behav Pharmacol. 2013;24(8):640–52.

    CAS  PubMed  Google Scholar 

  10. Gonzalez S, Scorticati C, Garcia-Arencibia M, de Miguel R, Ramos JA, Fernandez-Ruiz J. Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson’s disease. Brain Res. 2006;1073–4:209–19.

    Google Scholar 

  11. van der Stelt M, Fox SH, Hill M, Crossman AR, Petrosino S, Di Marzo V, et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. FASEB J. 2005;19(9):1140–2.

    PubMed  Google Scholar 

  12. Kelsey JE, Harris O, Cassin J. The CB(1) antagonist rimonabant is adjunctively therapeutic as well as monotherapeutic in an animal model of Parkinson’s disease. Behav Brain Res. 2009;203(2):304–7.

    CAS  PubMed  Google Scholar 

  13. Walsh S, Gorman AM, Finn DP, Dowd E. The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats. Brain Res. 2010;1363:40–8.

    CAS  PubMed  Google Scholar 

  14. Cao X, Liang L, Hadcock JR, Iredale PA, Griffith DA, Menniti FS, et al. Blockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J Pharmacol Exp Ther. 2007;323(1):318–26.

    CAS  PubMed  Google Scholar 

  15. Fernandez-Espejo E, Caraballo I, de Fonseca FR, El Banoua F, Ferrer B, Flores JA, et al. Cannabinoid CB1 antagonists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experimental parkinsonism. Neurobiol Dis. 2005;18(3):591–601.

    CAS  PubMed  Google Scholar 

  16. Segovia G, Mora F, Crossman AR, Brotchie JM. Effects of CB1 cannabinoid receptor modulating compounds on the hyperkinesia induced by high-dose levodopa in the reserpine-treated rat model of Parkinson’s disease. Mov Disord. 2003;18(2):138–49.

    PubMed  Google Scholar 

  17. Morgese MG, Cassano T, Cuomo V, Giuffrida A. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: role of CB(1) and TRPV1 receptors. Exp Neurol. 2007;208(1):110–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez A, Macheda T, Morgese MG, Trabace L, Giuffrida A. The cannabinoid agonist WIN55212-2 decreases L-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats. Neurosci Res. 2012;72(3):236–42.

    CAS  PubMed  Google Scholar 

  19. Gilgun-Sherki Y, Melamed E, Mechoulam R, Offen D. The CB1 cannabinoid receptor agonist, HU-210, reduces levodopa-induced rotations in 6-hydroxydopamine-lesioned rats. Pharmacol Toxicol. 2003;93(2):66–70.

    CAS  PubMed  Google Scholar 

  20. Fox SH, Henry B, Hill M, Crossman A, Brotchie J. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2002;17(6):1180–7.

    PubMed  Google Scholar 

  21. Meschler JP, Howlett AC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology. 2001;156(1):79–85.

    CAS  PubMed  Google Scholar 

  22. Moss DE, McMaster SB, Rogers J. Tetrahydrocannabinol potentiates reserpine-induced hypokinesia. Pharmacol Biochem Behav. 1981;15(5):779–83.

    CAS  PubMed  Google Scholar 

  23. Lotan I, Treves TA, Roditi Y, Djaldetti R. Cannabis (medical marijuana) treatment for motor and non-motor symptoms of Parkinson disease: an open-label observational study. Clin Neuropharmacol. 2014;37(2):41–4.

    PubMed  Google Scholar 

  24. Shohet A, Khlebtovsky A, Roizen N, Roditi Y, Djaldetti R. Effect of medical cannabis on thermal quantitative measurements of pain in patients with Parkinson’s disease. Eur J Pain (London). 2017;21(3):486–93.

    CAS  Google Scholar 

  25. Frankel JP, Hughes A, Lees AJ, Stern GM. Marijuana for parkinsonian tremor. J Neurol Neurosurg Psychiatry. 1990;53(5):436.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zuardi AW, Crippa JA, Hallak JE, Pinto JP, Chagas MH, Rodrigues GG, et al. Cannabidiol for the treatment of psychosis in Parkinson’s disease. J Psychopharmacol. 2009;23(8):979–83.

    CAS  PubMed  Google Scholar 

  27. Chagas MH, Zuardi AW, Tumas V, Pena-Pereira MA, Sobreira ET, Bergamaschi MM, et al. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. J Psychopharmacol. 2014;28(11):1088–98.

    PubMed  Google Scholar 

  28. Mesnage V, Houeto JL, Bonnet AM, Clavier I, Arnulf I, Cattelin F, et al. Neurokinin B, neurotensin, and cannabinoid receptor antagonists and Parkinson disease. Clin Neuropharmacol. 2004;27(3):108–10.

    CAS  PubMed  Google Scholar 

  29. Carroll CB, Bain PG, Teare L, Liu X, Joint C, Wroath C, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology. 2004;63(7):1245–50.

    CAS  PubMed  Google Scholar 

  30. Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology. 2001;57(11):2108–11.

    CAS  PubMed  Google Scholar 

  31. Chagas MH, Eckeli AL, Zuardi AW, Pena-Pereira MA, Sobreira-Neto MA, Sobreira ET, et al. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series. J Clin Pharm Ther. 2014;39(5):564–6.

    CAS  PubMed  Google Scholar 

  32. McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25(1):24–34.

    CAS  PubMed  Google Scholar 

  33. Wyant KJ, Ridder AJ, Dayalu P. Huntington’s disease-update on treatments. Curr Neurol Neurosci Rep. 2017;17(4):33.

    PubMed  Google Scholar 

  34. Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat. 2004;27(3):143–64.

    CAS  PubMed  Google Scholar 

  35. Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(a) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience. 2000;97(3):505–19.

    CAS  PubMed  Google Scholar 

  36. Albin RL, Reiner A, Anderson KD, Dure LS, Handelin B, Balfour R, et al. Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol. 1992;31(4):425–30.

    CAS  PubMed  Google Scholar 

  37. Faull RL, Waldvogel HJ, Nicholson LF, Synek BJ. The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington’s disease and in the quinolinic acid-lesioned rat. Prog Brain Res. 1993;99:105–23.

    CAS  PubMed  Google Scholar 

  38. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lastres-Becker I, De Miguel R, Fernandez-Ruiz JJ. The endocannabinoid system and Huntington’s disease. Curr Drug Targets CNS Neurol Disord. 2003;2(5):335–47.

    CAS  PubMed  Google Scholar 

  40. de Lago E, Fernandez-Ruiz J, Ortega-Gutierrez S, Cabranes A, Pryce G, Baker D, et al. UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington’s disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur Neuropsychopharmacol. 2006;16(1):7–18.

    PubMed  Google Scholar 

  41. Lastres-Becker I, de Miguel R, De Petrocellis L, Makriyannis A, Di Marzo V, Fernandez-Ruiz J. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem. 2003;84(5):1097–109.

    CAS  PubMed  Google Scholar 

  42. Lastres-Becker I, Hansen HH, Berrendero F, De Miguel R, Perez-Rosado A, Manzanares J, et al. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse (N Y). 2002;44(1):23–35.

    CAS  Google Scholar 

  43. de Lago E, Urbani P, Ramos JA, Di Marzo V, Fernandez-Ruiz J. Arvanil, a hybrid endocannabinoid and vanilloid compound, behaves as an antihyperkinetic agent in a rat model of Huntington’s disease. Brain Res. 2005;1050(1–2):210–6.

    PubMed  Google Scholar 

  44. Dowie MJ, Howard ML, Nicholson LF, Faull RL, Hannan AJ, Glass M. Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington’s disease transgenic mice. Neuroscience. 2010;170(1):324–36.

    CAS  PubMed  Google Scholar 

  45. Muller-Vahl KR, Schneider U, Emrich HM. Nabilone increases choreatic movements in Huntington’s disease. Mov Disord. 1999;14(6):1038–40.

    CAS  PubMed  Google Scholar 

  46. Curtis A, Rickards H. Nabilone could treat chorea and irritability in Huntington’s disease. J Neuropsychiatry Clin Neurosci. 2006;18(4):553–4.

    PubMed  Google Scholar 

  47. Curtis A, Mitchell I, Patel S, Ives N, Rickards H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord. 2009;24(15):2254–9.

    PubMed  Google Scholar 

  48. Consroe P, Laguna J, Allender J, Snider S, Stern L, Sandyk R, et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav. 1991;40(3):701–8.

    CAS  PubMed  Google Scholar 

  49. Lopez-Sendon Moreno JL, Garcia Caldentey J, Trigo Cubillo P, Ruiz Romero C, Garcia Ribas G, Alonso Arias MA, et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol. 2016;263(7):1390–400.

    CAS  PubMed  Google Scholar 

  50. Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28(7):863–73.

    PubMed  PubMed Central  Google Scholar 

  51. Page D, Butler A, Jahanshahi M. Quality of life in focal, segmental, and generalized dystonia. Mov Disord. 2007;22(3):341–7.

    PubMed  Google Scholar 

  52. Vitek JL. Pathophysiology of dystonia: a neuronal model. Mov Disord. 2002;17(Suppl 3):S49–62.

    PubMed  Google Scholar 

  53. Moro E, LeReun C, Krauss JK, Albanese A, Lin JP, Walleser Autiero S, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24(4):552–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Brecl Jakob G, Pelykh O, Kosutzka Z, Pirtosek Z, Trost M, Ilmberger J, et al. Postural stability under globus pallidus internus stimulation for dystonia. Clin Neurophysiol. 2015;126(12):2299–305.

    PubMed  Google Scholar 

  55. Sharma N. Neuropathology of dystonia. Tremor Other Hyperkinet Mov (N Y). 2019;9:569.

    Google Scholar 

  56. Richter A, Loscher W. (+)-WIN 55,212-2, a novel cannabinoid receptor agonist, exerts antidystonic effects in mutant dystonic hamsters. Eur J Pharmacol. 1994;264(3):371–7.

    CAS  PubMed  Google Scholar 

  57. Richter A, Loscher W. Effects of pharmacological manipulations of cannabinoid receptors on severity of dystonia in a genetic model of paroxysmal dyskinesia. Eur J Pharmacol. 2002;454(2–3):145–51.

    CAS  PubMed  Google Scholar 

  58. Fox SH, Kellett M, Moore AP, Crossman AR, Brotchie JM. Randomised, double-blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Mov Disord. 2002;17(1):145–9.

    PubMed  Google Scholar 

  59. Zadikoff C, Wadia PM, Miyasaki J, Chen R, Lang AE, So J, Fox SH. Cannabinoid, CB1 agonists in cervical dystonia: failure in a phase IIa randomized controlled trial. Basal Ganglia. 2011;1:91–5.

    Google Scholar 

  60. Consroe P, Sandyk R, Snider SR. Open label evaluation of cannabidiol in dystonic movement disorders. Int J Neurosci. 1986;30(4):277–82.

    CAS  PubMed  Google Scholar 

  61. Chatterjee A, Almahrezi A, Ware M, Fitzcharles MA. A dramatic response to inhaled cannabis in a woman with central thalamic pain and dystonia. J Pain Symptom Manag. 2002;24(1):4–6.

    Google Scholar 

  62. Uribe Roca MC, Micheli F, Viotti R. Cannabis sativa and dystonia secondary to Wilson’s disease. Mov Disord. 2005;20(1):113–5.

    PubMed  Google Scholar 

  63. Scharf JM, Miller LL, Gauvin CA, Alabiso J, Mathews CA, Ben-Shlomo Y. Population prevalence of Tourette syndrome: a systematic review and meta-analysis. Mov Disord. 2015;30(2):221–8.

    PubMed  Google Scholar 

  64. Jankovic J. Therapeutic developments for tics and myoclonus. Mov Disord. 2015;30(11):1566–73.

    CAS  PubMed  Google Scholar 

  65. Kanaan AS, Jakubovski E, Muller-Vahl K. Significant tic reduction in an otherwise treatment-resistant patient with Gilles de la Tourette syndrome following treatment with nabiximols. Brain Sci. 2017;7(5):E47.

    PubMed  Google Scholar 

  66. Pichler EM, Kawohl W, Seifritz E, Roser P. Pure delta-9-tetrahydrocannabinol and its combination with cannabidiol in treatment-resistant Tourette syndrome: a case report. Int J Psychiatry Med. 2019;54(2):150–6.

    PubMed  Google Scholar 

  67. Trainor D, Evans L, Bird R. Severe motor and vocal tics controlled with Sativex(R). Australas Psychiatry. 2016;24(6):541–4.

    PubMed  Google Scholar 

  68. Brunnauer A, Segmiller FM, Volkamer T, Laux G, Muller N, Dehning S. Cannabinoids improve driving ability in a Tourette’s patient. Psychiatry Res. 2011;190(2–3):382.

    PubMed  Google Scholar 

  69. Hemming M, Yellowlees PM. Effective treatment of Tourette’s syndrome with marijuana. J Psychopharmacol. 1993;7(4):389–91.

    CAS  PubMed  Google Scholar 

  70. Sandyk R, Awerbuch G. Marijuana and Tourette’s syndrome. J Clin Psychopharmacol. 1988;8(6):444–5.

    CAS  PubMed  Google Scholar 

  71. Hasan A, Rothenberger A, Munchau A, Wobrock T, Falkai P, Roessner V. Oral delta 9-tetrahydrocannabinol improved refractory Gilles de la Tourette syndrome in an adolescent by increasing intracortical inhibition: a case report. J Clin Psychopharmacol. 2010;30(2):190–2.

    PubMed  Google Scholar 

  72. Emrich KRM-VUSHM. Combined treatment of Tourette syndrome with Δ9-THC and dopamine receptor antagonists. J Cannabis Ther. 2002;2(3–4):10.

    Google Scholar 

  73. Szejko N, Ewgeni J, Fremer C, Kunert K, Müller-Vahl K. Delta-9-tetrahydrocannabinol for the treatment of a child with Tourette syndrome: case report. EJMCR. 2018;2(2):3.

    Google Scholar 

  74. Szejko N, Jakubovski E, Fremer C, Müller-Vahl KR. Vaporized cannabis is effective and well-tolerated in an adolescent with Tourette syndrome. Med Cannabis Cannabinoid. 2019;2:4.

    Google Scholar 

  75. Muller-Vahl KR, Kolbe H, Schneider U, Emrich HM. Cannabinoids: possible role in patho-physiology and therapy of Gilles de la Tourette syndrome. Acta Psychiatr Scand. 1998;98(6):502–6.

    CAS  PubMed  Google Scholar 

  76. Thaler A, Arad S, Schleider LB, Knaani J, Taichman T, Giladi N, et al. Single center experience with medical cannabis in Gilles de la Tourette syndrome. Parkinsonism Relat Disord. 2019;61:211–3.

    PubMed  Google Scholar 

  77. Abi-Jaoude E, Chen L, Cheung P, Bhikram T, Sandor P. Preliminary evidence on cannabis effectiveness and tolerability for adults with Tourette syndrome. J Neuropsychiatry Clin Neurosci. 2017;29(4):391–400.

    PubMed  Google Scholar 

  78. Muller-Vahl KR, Schneider U, Koblenz A, Jobges M, Kolbe H, Daldrup T, et al. Treatment of Tourette’s syndrome with delta 9-tetrahydrocannabinol (THC): a randomized crossover trial. Pharmacopsychiatry. 2002;35(2):57–61.

    CAS  PubMed  Google Scholar 

  79. Muller-Vahl KR, Schneider U, Prevedel H, Theloe K, Kolbe H, Daldrup T, et al. Delta 9-tetrahydrocannabinol (THC) is effective in the treatment of tics in Tourette syndrome: a 6-week randomized trial. J Clin Psychiatry. 2003;64(4):459–65.

    PubMed  Google Scholar 

  80. Curtis A, Clarke CE, Rickards HE. Cannabinoids for Tourette’s syndrome. Cochrane Database Syst Rev. 2009;(4):Cd006565.

    Google Scholar 

  81. Burggren AC, Shirazi A, Ginder N, London ED. Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. Am J Drug Alcohol Abuse. 2019;45:1–17.

    Google Scholar 

  82. Lubman DI, Cheetham A, Yucel M. Cannabis and adolescent brain development. Pharmacol Ther. 2015;148:1–16.

    CAS  PubMed  Google Scholar 

  83. Meruelo AD, Castro N, Cota CI, Tapert SF. Cannabis and alcohol use, and the developing brain. Behav Brain Res. 2017;325(Pt A):44–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sutherland DP. Effect of marijuana on essential tremor: a case report [abstract]. Mov Disord. 2016;31(suppl 2). https://www.mdsabstracts.org/abstract/effect-of-marijuana-on-essential-tremor-a-case-report/.

  85. Megelin T, Ghorayeb I. Cannabis for restless legs syndrome: a report of six patients. Sleep Med. 2017;36:182–3.

    PubMed  Google Scholar 

  86. Sekar K, Pack A. Epidiolex as adjunct therapy for treatment of refractory epilepsy: a comprehensive review with a focus on adverse effects. F1000Res. 2019;8:F1000 Faculty Rev-234.

    Google Scholar 

  87. Ewing LE, Skinner CM, Quick CM, Kennon-McGill S, McGill MR, Walker LA, et al. Hepatotoxicity of a cannabidiol-rich cannabis extract in the mouse model. Molecules. 2019;24(9):E1694.

    PubMed  Google Scholar 

  88. Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58(9):1586–92.

    CAS  PubMed  Google Scholar 

  89. Shah RR. Drug development and use in the elderly: search for the right dose and dosing regimen (parts I and II). Br J Clin Pharmacol. 2004;58(5):452–69.

    PubMed  PubMed Central  Google Scholar 

  90. Ujvary I, Hanus L. Human metabolites of cannabidiol: a review on their formation, biological activity, and relevance in therapy. Cannabis Cannabinoid Res. 2016;1(1):90–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bergamaschi MM, Queiroz RH, Zuardi AW, Crippa JA. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf. 2011;6(4):237–49.

    CAS  PubMed  Google Scholar 

  92. Sandyk R, Snider SR, Consroe P, Elias SM. Cannabidiol in dystonic movement disorders. Psychiatry Res. 1986;18(3):291.

    CAS  PubMed  Google Scholar 

  93. Muller-Vahl KR, Prevedel H, Theloe K, Kolbe H, Emrich HM, Schneider U. Treatment of Tourette syndrome with delta-9-tetrahydrocannabinol (delta 9-THC): no influence on neuropsychological performance. Neuropsychopharmacology. 2003;28(2):384–8.

    PubMed  Google Scholar 

  94. Jakubovski E, Muller-Vahl K. Speechlessness in Gilles de la Tourette syndrome: cannabis-based medicines improve severe vocal blocking tics in two patients. Int J Mol Sci. 2017;18(8):E1739.

    PubMed  Google Scholar 

  95. Muller-Vahl KR, Schneider U, Kolbe H, Emrich HM. Treatment of Tourette’s syndrome with delta-9-tetrahydrocannabinol. Am J Psychiatry. 1999;156(3):495.

    CAS  PubMed  Google Scholar 

Cannabinoids in Neurosurgery

  1. Stockings E, Zagic D, Campbell G, Weier M, Hall WD, Nielsen S, et al. Evidence for cannabis and cannabinoids for epilepsy: a systematic review of controlled and observational evidence. J Neurol Neurosurg Psychiatry. 2018;89(7):741–53.

    PubMed  Google Scholar 

  2. Collin C, Ehler E, Waberzinek G, Alsindi Z, Davies P, Powell K, et al. A double-blind, randomized, placebo-controlled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. Neurol Res. 2010;32(5):451–9.

    CAS  PubMed  Google Scholar 

  3. Zajicek J, Fox P, Sanders H, Wright D, Vickery J, Nunn A, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003;362(9395):1517–26.

    CAS  PubMed  Google Scholar 

  4. Boehnke KF, Gangopadhyay S, Clauw DJ, Haffajee RL. Qualifying conditions of medical cannabis license holders in the United States. Health Aff (Millwood). 2019;38(2):295–302.

    Google Scholar 

  5. Volkow ND, Baler RD, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014;370(23):2219–27.

    PubMed  PubMed Central  Google Scholar 

  6. Mandelbaum DE, de la Monte SM. Adverse structural and functional effects of marijuana on the brain: evidence reviewed. Pediatr Neurol. 2017;66:12–20.

    PubMed  Google Scholar 

  7. Ilgen MA, Bohnert K, Kleinberg F, Jannausch M, Bohnert AS, Walton M, et al. Characteristics of adults seeking medical marijuana certification. Drug Alcohol Depend. 2013;132(3):654–9.

    PubMed  Google Scholar 

  8. Light MK, Orens A, Lewandowski B, Pickton T. Market size and demand for marijuana in Colorado. http://www.cannabisconsumer.org/uploads/9/7/9/6/97962014/market_size_and_demand_study_july_9_2014[1].pdf.

  9. Castillo PE, Younts TJ, Chavez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76(1):70–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol. 2005;168:299–325.

    CAS  Google Scholar 

  11. Klein TW, Newton CA. Therapeutic potential of cannabinoid-based drugs. Adv Exp Med Biol. 2007;601:395–413.

    PubMed  Google Scholar 

  12. Hauser W, Welsch P, Klose P, Radbruch L, Fitzcharles MA. Efficacy, tolerability and safety of cannabis-based medicines for cancer pain: a systematic review with meta-analysis of randomised controlled trials. Schmerz. 2019;33:424.

    PubMed  Google Scholar 

  13. Medicine TNAoSa. The health effects on cannabis and cannabinoids. Washington, D.C.: National Academies Press; 2017. ISBN: 978-0-309-45304-2.

    Google Scholar 

  14. Stockings E, Campbell G, Hall WD, Nielsen S, Zagic D, Rahman R, et al. Cannabis and cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies. Pain. 2018;159(10):1932–54.

    CAS  PubMed  Google Scholar 

  15. Haroutounian S, Ratz Y, Ginosar Y, Furmanov K, Saifi F, Meidan R, et al. The effect of medicinal cannabis on pain and quality-of-life outcomes in chronic pain: a prospective open-label study. Clin J Pain. 2016;32(12):1036–43.

    PubMed  Google Scholar 

  16. Yassin M, Robinson D. Effect of medicinal cannabis therapy (MCT) on severity of chronic low back pain, sciatica and lumbar range of motion. Int J Anesth Pain Med. 2016;2(1:5)1–4.

    Google Scholar 

  17. Mondello E, Quattrone D, Cardia L, Bova G, Mallamace R, Barbagallo AA, et al. Cannabinoids and spinal cord stimulation for the treatment of failed back surgery syndrome refractory pain. J Pain Res. 2018;11:1761–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinsger M, Schimetta W, Volc D, Hiermann E, Riederer F, Polz W. Benefits of an add-on treatment with the synthetic cannabinomimetic nabilone on patients with chronic pain--a randomized controlled trial. Wien Klin Wochenschr. 2006;118(11–12):327–35.

    PubMed  Google Scholar 

  19. Buynak R, Shapiro DY, Okamoto A, Van Hove I, Rauschkolb C, Steup A, et al. Efficacy and safety of tapentadol extended release for the management of chronic low back pain: results of a prospective, randomized, double-blind, placebo- and active-controlled phase III study. Expert Opin Pharmacother. 2010;11(11):1787–804.

    CAS  PubMed  Google Scholar 

  20. Eriksen J, Jensen MK, Sjogren P, Ekholm O, Rasmussen NK. Epidemiology of chronic non-malignant pain in Denmark. Pain. 2003;106(3):221–8.

    PubMed  Google Scholar 

  21. Jamison RN, Raymond SA, Slawsby EA, Nedeljkovic SS, Katz NP. Opioid therapy for chronic noncancer back pain. A randomized prospective study. Spine. 1998;23(23):2591–600.

    CAS  PubMed  Google Scholar 

  22. Vorsanger GJ, Xiang J, Gana TJ, Pascual ML, Fleming RR. Extended-release tramadol (tramadol ER) in the treatment of chronic low back pain. J Opioid Manag. 2008;4(2):87–97.

    PubMed  Google Scholar 

  23. Liu CW, Bhatia A, Buzon-Tan A, Walker S, Ilangomaran D, Kara J, et al. Weeding out the problem: the impact of preoperative cannabinoid use on pain in the perioperative period. Anesth Analg. 2019;129(3):874–81.

    PubMed  Google Scholar 

  24. Salottolo K, Peck L, Tanner Ii A, Carrick MM, Madayag R, McGuire E, et al. The grass is not always greener: a multi-institutional pilot study of marijuana use and acute pain management following traumatic injury. Patient Saf Surg. 2018;12:16.

    PubMed  PubMed Central  Google Scholar 

  25. Twardowski MA, Link MM, Twardowski NM. Effects of cannabis use on sedation requirements for endoscopic procedures. J Am Osteopath Assoc. 2019;119:307–11.

    Google Scholar 

  26. Bradford AC, Bradford WD. Medical marijuana laws reduce prescription medication use in medicare part D. Health Aff (Millwood). 2016;35(7):1230–6.

    Google Scholar 

  27. Boehnke KF, Scott JR, Litinas E, Sisley S, Williams DA, Clauw DJ. Pills to pot: observational analyses of cannabis substitution among medical cannabis users with chronic pain. J Pain. 2019;20:830.

    PubMed  Google Scholar 

  28. Boehnke KF, Litinas E, Clauw DJ. Medical cannabis use is associated with decreased opiate medication use in a retrospective cross-sectional survey of patients with chronic pain. J Pain. 2016;17(6):739–44.

    PubMed  Google Scholar 

  29. Bachhuber MA, Saloner B, Cunningham CO, Barry CL. Medical cannabis laws and opioid analgesic overdose mortality in the United States, 1999-2010. JAMA Intern Med. 2014;174(10):1668–73.

    PubMed  PubMed Central  Google Scholar 

  30. Shover CL, Davis CS, Gordon SC, Humphreys K. Association between medical cannabis laws and opioid overdose mortality has reversed over time. Proc Natl Acad Sci U S A. 2019;116(26):12624–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Corchero J, Manzanares J, Fuentes JA. Cannabinoid/opioid crosstalk in the central nervous system. Crit Rev Neurobiol. 2004;16(1–2):159–72.

    CAS  PubMed  Google Scholar 

  32. Hauser W, Finn DP, Kalso E, Krcevski-Skvarc N, Kress HG, Morlion B, et al. European pain federation (EFIC) position paper on appropriate use of cannabis-based medicines and medical cannabis for chronic pain management. Eur J Pain. 2018;22(9):1547–64.

    PubMed  Google Scholar 

  33. Allan GM, Ramji J, Perry D, Ton J, Beahm NP, Crisp N, et al. Simplified guideline for prescribing medical cannabinoids in primary care. Can Fam Physician. 2018;64(2):111–20.

    PubMed  PubMed Central  Google Scholar 

  34. Bachhuber MA, Arnsten JH, Cunningham CO, Sohler N. Does medical cannabis use increase or decrease the use of opioid analgesics and other prescription drugs? J Addict Med. 2018;12(4):259–61.

    PubMed  PubMed Central  Google Scholar 

  35. Olfson M, Wall MM, Liu SM, Blanco C. Cannabis use and risk of prescription opioid use disorder in the United States. Am J Psychiatry. 2018;175(1):47–53.

    PubMed  Google Scholar 

  36. Rocha FC, Dos Santos Junior JG, Stefano SC, da Silveira DX. Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas. J Neuro-Oncol. 2014;116(1):11–24.

    CAS  Google Scholar 

  37. Bar-Lev Schleider L, Mechoulam R, Lederman V, Hilou M, Lencovsky O, Betzalel O, et al. Prospective analysis of safety and efficacy of medical cannabis in large unselected population of patients with cancer. Eur J Intern Med. 2018;49:37–43.

    PubMed  Google Scholar 

  38. Guzman M, Duarte MJ, Blazquez C, Ravina J, Rosa MC, Galve-Roperh I, et al. A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer. 2006;95(2):197–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. van Linde ME, Brahm CG, de Witt Hamer PC, Reijneveld JC, Bruynzeel AME, Vandertop WP, et al. Treatment outcome of patients with recurrent glioblastoma multiforme: a retrospective multicenter analysis. J Neuro-Oncol. 2017;135(1):183–92.

    Google Scholar 

  40. Short SC, Little C. A 2-part safety and exploratory efficacy randomized double-blind, placebo-controlled study of a 1:1 ratio of the cannabinoids cannabidiol and delta-9-tetrahydrocannabinol (CBD;THC) plus dose-intense temozolomide (TMZ) in patients with recurrent glioblastoma multiforme (GBM). Society for Neuro-Oncology 22nd Annual Scientific Meeting, 16–19 November 2017, San Francisco, USA, 2017.

    Google Scholar 

  41. Efird JT, Friedman GD, Sidney S, Klatsky A, Habel LA, Udaltsova NV, et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: cigarette smoking and other lifestyle behaviors. J Neuro-Oncol. 2004;68(1):57–69.

    Google Scholar 

  42. Kuijten RR, Bunin GR, Nass CC, Meadows AT. Gestational and familial risk factors for childhood astrocytoma: results of a case-control study. Cancer Res. 1990;50(9):2608–12.

    CAS  PubMed  Google Scholar 

  43. Arevalo-Martin A, Molina-Holgado E, Garcia-Ovejero D. Cannabinoids to treat spinal cord injury. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:190–9.

    CAS  Google Scholar 

  44. Wilsey BL, Deutsch R, Samara E, Marcotte TD, Barnes AJ, Huestis MA, et al. A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis. J Pain Res. 2016;9:587–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rintala DH, Fiess RN, Tan G, Holmes SA, Bruel BM. Effect of dronabinol on central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil. 2010;89(10):840–8.

    PubMed  Google Scholar 

  46. Cardenas DD, Jensen MP. Treatments for chronic pain in persons with spinal cord injury: a survey study. J Spinal Cord Med. 2006;29(2):109–17.

    PubMed  PubMed Central  Google Scholar 

  47. Hagenbach U, Luz S, Ghafoor N, Berger JM, Grotenhermen F, Brenneisen R, et al. The treatment of spasticity with Delta9-tetrahydrocannabinol in persons with spinal cord injury. Spinal Cord. 2007;45(8):551–62.

    CAS  PubMed  Google Scholar 

  48. Pooyania S, Ethans K, Szturm T, Casey A, Perry D. A randomized, double-blinded, crossover pilot study assessing the effect of nabilone on spasticity in persons with spinal cord injury. Arch Phys Med Rehabil. 2010;91(5):703–7.

    PubMed  Google Scholar 

  49. Fernandez-Ruiz J, Moro MA, Martinez-Orgado J. Cannabinoids in neurodegenerative disorders and stroke/brain trauma: from preclinical models to clinical applications. Neurotherapeutics. 2015;12(4):793–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Castillo A, Tolon MR, Fernandez-Ruiz J, Romero J, Martinez-Orgado J. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis. 2010;37(2):434–40.

    CAS  PubMed  Google Scholar 

  51. Shohami E, Cohen-Yeshurun A, Magid L, Algali M, Mechoulam R. Endocannabinoids and traumatic brain injury. Br J Pharmacol. 2011;163(7):1402–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ilie G, Adlaf EM, Mann RE, Ialomiteanu A, Hamilton H, Rehm J, et al. Associations between a history of traumatic brain injuries and current cigarette smoking, substance use, and elevated psychological distress in a population sample of Canadian adults. J Neurotrauma. 2015;32(14):1130–4.

    PubMed  PubMed Central  Google Scholar 

  53. Nguyen BM, Kim D, Bricker S, Bongard F, Neville A, Putnam B, et al. Effect of marijuana use on outcomes in traumatic brain injury. Am Surg. 2014;80(10):979–83.

    PubMed  Google Scholar 

  54. Maas AI, Murray G, Henney H 3rd, Kassem N, Legrand V, Mangelus M, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 2006;5(1):38–45.

    CAS  PubMed  Google Scholar 

  55. Hillard CJ. Endocannabinoids and vascular function. J Pharmacol Exp Ther. 2000;294(1):27–32.

    CAS  PubMed  Google Scholar 

  56. Scharf EL. Translating endocannabinoid biology into clinical practice: cannabidiol for stroke prevention. Cannabis Cannabinoid Res. 2017;2(1):259–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zachariah SB. Stroke after heavy marijuana smoking. Stroke. 1991;22(3):406–9.

    CAS  PubMed  Google Scholar 

  58. Mateo I, Pinedo A, Gomez-Beldarrain M, Basterretxea JM, Garcia-Monco JC. Recurrent stroke associated with cannabis use. J Neurol Neurosurg Psychiatry. 2005;76(3):435–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Duchene C, Olindo S, Chausson N, Jeannin S, Cohen-Tenoudji P, Smadja D. Cannabis-induced cerebral and myocardial infarction in a young woman. Rev Neurol (Paris). 2010;166(4):438–42.

    CAS  Google Scholar 

  60. Bal S, Khurana D, Lal V, Prabhakar S. Posterior circulation stroke in a cannabis abuser. Neurol India. 2009;57(1):91–2.

    PubMed  Google Scholar 

  61. Singh NN, Pan Y, Muengtaweeponsa S, Geller TJ, Cruz-Flores S. Cannabis-related stroke: case series and review of literature. J Stroke Cerebrovasc Dis. 2012;21(7):555–60.

    PubMed  Google Scholar 

  62. Wolff V, Lauer V, Rouyer O, Sellal F, Meyer N, Raul JS, et al. Cannabis use, ischemic stroke, and multifocal intracranial vasoconstriction: a prospective study in 48 consecutive young patients. Stroke. 2011;42(6):1778–80.

    PubMed  Google Scholar 

  63. Barber PA, Pridmore HM, Krishnamurthy V, Roberts S, Spriggs DA, Carter KN, et al. Cannabis, ischemic stroke, and transient ischemic attack: a case-control study. Stroke. 2013;44(8):2327–9.

    PubMed  Google Scholar 

  64. Rumalla K, Reddy AY, Mittal MK. Recreational marijuana use and acute ischemic stroke: a population-based analysis of hospitalized patients in the United States. J Neurol Sci. 2016;364:191–6.

    PubMed  Google Scholar 

  65. Westover AN, McBride S, Haley RW. Stroke in young adults who abuse amphetamines or cocaine: a population-based study of hospitalized patients. Arch Gen Psychiatry. 2007;64(4):495–502.

    PubMed  Google Scholar 

  66. Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, et al. Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke. 2012;43(1):211–9.

    CAS  PubMed  Google Scholar 

  67. Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (−)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A. 1998;95(14):8268–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ducros A, Boukobza M, Porcher R, Sarov M, Valade D, Bousser MG. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain. 2007;130(Pt 12):3091–101.

    PubMed  Google Scholar 

  69. Wolff V, Schlagowski AI, Rouyer O, Charles AL, Singh F, Auger C, et al. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke. Biomed Res Int. 2015;2015:323706.

    PubMed  PubMed Central  Google Scholar 

  70. Wolff V, Armspach JP, Beaujeux R, Manisor M, Rouyer O, Lauer V, et al. High frequency of intracranial arterial stenosis and cannabis use in ischaemic stroke in the young. Cerebrovasc Dis. 2014;37(6):438–43.

    CAS  PubMed  Google Scholar 

  71. Herning RI, Better WE, Tate K, Cadet JL. Cerebrovascular perfusion in marijuana users during a month of monitored abstinence. Neurology. 2005;64(3):488–93.

    PubMed  Google Scholar 

  72. Behrouz R, Birnbaum L, Grandhi R, Johnson J, Misra V, Palacio S, et al. Cannabis use and outcomes in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2016;47(5):1371–3.

    PubMed  Google Scholar 

  73. Malhotra K, Rumalla K, Mittal MK. Association and clinical outcomes of marijuana in patients with intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2018;27(12):3479–86.

    PubMed  Google Scholar 

  74. Rumalla K, Reddy AY, Mittal MK. Association of recreational marijuana use with aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2016;25(2):452–60.

    PubMed  Google Scholar 

  75. Di Napoli M, Zha AM, Godoy DA, Masotti L, Schreuder FH, Popa-Wagner A, et al. Prior cannabis use is associated with outcome after intracerebral hemorrhage. Cerebrovasc Dis. 2016;41(5–6):248–55.

    PubMed  Google Scholar 

  76. Uhegwu N, Bashir A, Hussain M, Dababneh H, Misthal S, Cohen-Gadol A. Marijuana induced reversible cerebral vasoconstriction syndrome. J Vasc Interv Neurol. 2015;8(1):36–8.

    PubMed  PubMed Central  Google Scholar 

  77. Maroon J, Bost J. Review of the neurological benefits of phytocannabinoids. Surg Neurol Int. 2018;9:91.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler E. Gaston .

Editor information

Editors and Affiliations

Appendix. American Academy of Neurology Classification of Evidence

Appendix. American Academy of Neurology Classification of Evidence

Therapeutic

Class I

A randomized, controlled clinical trial of the intervention of interest with masked or objective outcome assessment, in a representative population. Relevant baseline characteristics are presented and substantially equivalent among treatment groups, or there is appropriate statistical adjustment for differences.

The following are also required:

  1. (a)

    Concealed allocation

  2. (b)

    Primary outcome(s) clearly defined

  3. (c)

    Exclusion/inclusion criteria clearly defined

  4. (d)

    Adequate accounting for dropouts (with at least 80% of enrolled subjects completing the study) and crossovers with numbers sufficiently low to have minimal potential for bias

  5. (e)

    For non-inferiority or equivalence trials claiming to prove efficacy for one or both drugs, the following are also required∗:

    1. 1.

      The authors explicitly state the clinically meaningful difference to be excluded by defining the threshold for equivalence or non-inferiority.

    2. 2.

      The standard treatment used in the study is substantially similar to that used in previous studies establishing efficacy of the standard treatment (e.g., for a drug, the mode of administration, dose, and dosage adjustments are similar to those previously shown to be effective).

    3. 3.

      The inclusion and exclusion criteria for patient selection and the outcomes of patients on the standard treatment are comparable to those of previous studies establishing efficacy of the standard treatment.

    4. 4.

      The interpretation of the results of the study is based upon a per protocol analysis that takes into account dropouts or crossovers.

Class II

A randomized controlled clinical trial of the intervention of interest in a representative population with masked or objective outcome assessment that lacks one criteria a–e above or a prospective matched cohort study with masked or objective outcome assessment in a representative population that meets b–e above. Relevant baseline characteristics are presented and substantially equivalent among treatment groups, or there is appropriate statistical adjustment for differences.

Class III

All other controlled trials (including well-defined natural history controls or patients serving as own controls) in a representative population, where outcome is independently assessed or independently derived by objective outcome measurement.∗∗

Class IV

Studies not meeting Class I, II, or III criteria including consensus or expert opinion.

∗Note that numbers 1–3 in Class Ie are required for Class II in equivalence trials. If any one of the three is missing, the class is automatically downgraded to Class III.

∗∗Objective outcome measurement: an outcome measure that is unlikely to be affected by an observer’s (patient, treating physician, investigator) expectation or bias (e.g., blood tests, administrative outcome data).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaston, T.E. et al. (2020). Cannabinoids in Neurologic Conditions. In: Finn, K. (eds) Cannabis in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-45968-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45968-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45967-3

  • Online ISBN: 978-3-030-45968-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics