Skip to main content

Abstract

Phthalates are water-insoluble organic plasticizers which provide flexibility to PVC-plastics and make them useable in pharmaceutical industry, medical devices, clothing, and food packings. These plasticizers leach out from such articles as they are not chemically bound to polymeric materials and act as toxicants. These contaminants are found everywhere in the environment. Humans are always exposed to different kinds of phthalates through food, inhalation, personal care products, clothing, medication, nutritional supplements, etc. The hand to mouth behavior of infants increases the risk of phthalates exposure at the crucial phase of their growth and development. The phthalates or their metabolites act as agonist or antagonist ligands and disrupt the chemical signaling of the endocrine hormones thus are regarded as endocrine disrupting chemicals (EDCs). So the disrupted messaging by the hormones implicate a number of abnormalities, behavioral issues, and diseases like impaired neurodevelopment, decreased IQ and attention deficit, early puberty and fertility issues, sex anomalies, altered reproductive development, etc. The impaired endocrinal signaling cause perturbation of lipid and glucose homeostasis and result in obesity, overweight and insulin resistance and type II diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Net S, Sempéré R, Delmont A, Paluselli A, Ouddane B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol. 2015;49(7):4019–35.

    Article  CAS  Google Scholar 

  2. Ventrice P, Ventrice D, Russo E, De Sarro G. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. Environ Toxicol Pharmacol. 2013;36(1):88–96.

    Article  CAS  Google Scholar 

  3. Lovekamp-Swan T, Davis BJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect. 2003;111(2):139–45.

    Article  CAS  Google Scholar 

  4. Sharpe RM, Skakkebaek NE. Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril. 2008;89(2):e33–e8.

    Article  Google Scholar 

  5. Research GV. https://www.grandviewresearch.com/industry-analysis/phthalic-anhydride-market.

  6. Serrano SE, Braun J, Trasande L, Dills R, Sathyanarayana S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health. 2014;13(1):43.

    Article  Google Scholar 

  7. Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39.

    Article  CAS  Google Scholar 

  8. Lambrot R, Muczynski V, Lécureuil C, Angenard G, Coffigny H, Pairault C, et al. Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect. 2009;117(1):32–7.

    Article  CAS  Google Scholar 

  9. Wittassek M, Koch HM, Angerer J, Brüning T. Assessing exposure to phthalates–the human biomonitoring approach. Mol Nutr Food Res. 2011;55(1):7–31.

    Article  CAS  Google Scholar 

  10. Zota AR, Phillips CA, Mitro SD. Recent fast food consumption and bisphenol A and phthalates exposures among the US population in NHANES, 2003–2010. Environ Health Perspect. 2016;124(10):1521–8.

    Article  CAS  Google Scholar 

  11. Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K, et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ Health Perspect. 2013;121(4):473–9.

    Article  Google Scholar 

  12. Guo Y, Wu Q, Kannan K. Phthalate metabolites in urine from China, and implications for human exposures. Environ Int. 2011;37(5):893–8.

    Article  CAS  Google Scholar 

  13. Das MT, Ghosh P, Thakur IS. Intake estimates of phthalate esters for South Delhi population based on exposure media assessment. Environ Pollut. 2014;189:118–25.

    Article  CAS  Google Scholar 

  14. Hartmann C, Uhl M, Weiss S, Koch HM, Scharf S, König J. Human biomonitoring of phthalate exposure in Austrian children and adults and cumulative risk assessment. Int J Hyg Environ Health. 2015;218(5):489–99.

    Article  CAS  Google Scholar 

  15. Ginsberg G, Ginsberg J, Foos B. Approaches to children’s exposure assessment: case study with diethylhexylphthalate (DEHP). Int J Environ Res Public Health. 2016;13(7):670.

    Article  Google Scholar 

  16. Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater. 2017;340:360–83.

    Article  CAS  Google Scholar 

  17. Silva MJ, Barr DB, Reidy JA, Kato K, Malek NA, Hodge CC, et al. Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol. 2003;77(10):561–7.

    Article  CAS  Google Scholar 

  18. Pincus G. The hormones V5: physiology, chemistry and applications. Saint Louis: Elsevier; 2012.

    Google Scholar 

  19. Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015;40(1):241–58.

    Article  CAS  Google Scholar 

  20. Meeker JD, Sathyanarayana S, Swan SH. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B. 2009;364(1526):2097–113.

    Article  CAS  Google Scholar 

  21. Kamrin MA. Phthalate risks, phthalate regulation, and public health: a review. J Toxicol Environ Health B. 2009;12(2):157–74.

    Article  CAS  Google Scholar 

  22. Stojanoska MM, Milosevic N, Milic N, Abenavoli L. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine. 2017;55(3):666–81.

    Article  CAS  Google Scholar 

  23. Buser MC, Murray HE, Scinicariello F. Age and sex differences in childhood and adulthood obesity association with phthalates: analyses of NHANES 2007–2010. Int J Hyg Environ Health. 2014;217(6):687–94.

    Article  Google Scholar 

  24. Zhang Y, Meng X, Chen L, Li D, Zhao L, Zhao Y, et al. Age and sex-specific relationships between phthalate exposures and obesity in Chinese children at puberty. PLoS One. 2014;9(8):e104852.

    Article  Google Scholar 

  25. Bell FP. Effects of phthalate esters on lipid metabolism in various tissues, cells and organelles in mammals. Environ Health Perspect. 1982;45:41–50.

    Article  CAS  Google Scholar 

  26. Feige JN, Gerber A, Casals-Casas C, Yang Q, Winkler C, Bedu E, et al. The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARα-dependent mechanisms. Environ Health Perspect. 2010;118(2):234–41.

    Article  CAS  Google Scholar 

  27. Kim SH, Park MJ. Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab. 2014;19(2):69.

    Article  Google Scholar 

  28. Campioli E, Martinez-Arguelles D, Papadopoulos V. In utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate promotes local adipose and systemic inflammation in adult male offspring. Nutr Diabetes. 2014;4(5):e115.

    Article  CAS  Google Scholar 

  29. Johns LE, Ferguson KK, Soldin OP, Cantonwine DE, Rivera-González LO, Del Toro LVA, et al. Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during pregnancy: a longitudinal analysis. Reprod Biol Endocrinol. 2015;13(1):4.

    Article  Google Scholar 

  30. Yang X, Liu H, Liu J, Li F, Li X, Shi L, et al. Rational selection of the 3D structure of biomacromolecules for molecular docking studies on the mechanism of endocrine disruptor action. Chem Res Toxicol. 2016;29(9):1565–70.

    Article  CAS  Google Scholar 

  31. Roglic G. WHO Global report on diabetes: a summary. Int J Noncommun Dis. 2016;1(1):3.

    Article  Google Scholar 

  32. Bhatia V, Viswanathan P. Insulin resistance and PPAR insulin sensitizers. Curr Opin Investig Drugs. 2006;7(10):891–7.

    CAS  Google Scholar 

  33. Dales RE, Kauri LM, Cakmak S. The associations between phthalate exposure and insulin resistance, β-cell function and blood glucose control in a population-based sample. Sci Total Environ. 2018;612:1287–92.

    Article  CAS  Google Scholar 

  34. Weldingh NM, Jørgensen-Kaur L, Becher R, Holme JA, Bodin J, Nygaard UC, et al. Bisphenol A is more potent than phthalate metabolites in reducing pancreatic β-cell function. Biomed Res Int. 2017;2017:1.

    Article  Google Scholar 

  35. Rajesh P, Balasubramanian K. Gestational exposure to di (2-ethylhexyl) phthalate (DEHP) impairs pancreatic β-cell function in F1 rat offspring. Toxicol Lett. 2015;232(1):46–57.

    Article  CAS  Google Scholar 

  36. Lapinskas PJ, Brown S, Leesnitzer LM, Blanchard S, Swanson C, Cattley RC, et al. Role of PPARα in mediating the effects of phthalates and metabolites in the liver. Toxicology. 2005;207(1):149–63.

    Article  CAS  Google Scholar 

  37. Sarath Josh M, Pradeep S, Vijayalekshmi Amma K, Balachandran S, Abdul Jaleel U, Doble M, et al. Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor α, β, γ subtypes: an in silico approach. J Appl Toxicol. 2014;34(7):754–65.

    Article  CAS  Google Scholar 

  38. Sarath Josh M, Pradeep S, Adarsh V, Vijayalekshmi Amma K, Sudha Devi R, Balachandran S, et al. In silico evidences for the binding of phthalates onto human estrogen receptor α, β subtypes and human estrogen-related receptor γ. Mol Simul. 2014;40(5):408–17.

    Article  CAS  Google Scholar 

  39. Carbone V, Velkov T. Interaction of phthalates and phenoxy acid herbicide environmental pollutants with intestinal intracellular lipid binding proteins. Chem Res Toxicol. 2013;26(8):1240–50.

    Article  CAS  Google Scholar 

  40. Huang H, McIntosh AL, Martin GG, Landrock KK, Landrock D, Gupta S, et al. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant. FEBS J. 2014;281(9):2266–83.

    Article  CAS  Google Scholar 

  41. Joensen UN, Jørgensen N, Meyts ERD, Skakkebæk NE. Testicular dysgenesis syndrome and Leydig cell function. Basic Clin Pharmacol Toxicol. 2008;102(2):155–61.

    Article  CAS  Google Scholar 

  42. Lottrup G, Andersson AM, Leffers H, Mortensen G, Toppari J, Skakkebaek N, et al. Possible impact of phthalates on infant reproductive health. Int J Androl. 2006;29(1):172–80.

    Article  CAS  Google Scholar 

  43. Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ Health Perspect. 2012;120(2):290–5.

    Article  CAS  Google Scholar 

  44. Bamai YA, Shibata E, Saito I, Araki A, Kanazawa A, Morimoto K, et al. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. Sci Total Environ. 2014;485:153–63.

    Article  Google Scholar 

  45. North ML, Takaro TK, Diamond ML, Ellis AK. Effects of phthalates on the development and expression of allergic disease and asthma. Ann Allergy Asthma Immunol. 2014;112(6):496–502.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooq, T., Hameed, A., Raza, A. (2021). Role of Phthalates as EDCs in Metabolic Disorders. In: Akash, M.S.H., Rehman, K., Hashmi, M.Z. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-45923-9_15

Download citation

Publish with us

Policies and ethics