Skip to main content

Phage-Phage, Phage-Bacteria, and Phage-Environment Communication

  • Chapter
  • First Online:
Biocommunication of Phages

Abstract

Besides obtaining and utilizing resources, organisms have three basic ecological tasks: to survive, to reproduce, and to move. Survival is necessary for reproduction, reproduction increases numbers, and movement at a minimum assures that all of an organism’s ‘eggs’ are not found in the same spatial ‘basket’. For bacteriophages (phages), these facets can be differentiated into mechanisms that operate within the context of bacterial hosts (intracellularly) versus less so, i.e., instead extracellularly. Survival of phages, or their inactivation, thus can occur in the course of infection of bacteria, or instead as free virions, that is, as phages which have not yet adsorbed and infected a bacterium. Reproduction by phages can range from that which is more closely linked with normal bacterial metabolism and which ends with the phage intracellular (as in the course of lysogenic cycles) to that which involves substantial modification of normal bacterial metabolism and which ends with the phage now extracelullar (as in the course of lytic cycles). Movement of phages can occur most familiarly as diffusing virions, but also while phages are infecting bacteria. In the course of undergoing these and other processes, materials and information can flow from one entity to another, such as resulting in, for example, detection by infecting phages of multiple virion adsorptions to the same cell, transfer of genetic material from phages to bacteria, or extracellular factors influencing phage infection abilities. Broadly, such flow of materials and information from one entity to another can be described as different processes of communication, including between phages, between phages and bacteria, or between phages and the environment more generally. In this chapter I explore such phage-associated communication including, particularly, in terms of its impact on phage ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (1990) Selection for lysis inhibition in bacteriophage. J Theor Biol 146:501–511

    CAS  PubMed  Google Scholar 

  • Abedon ST (1992) Lysis of lysis inhibited bacteriophage T4-infected cells. J Bacteriol 174:8073–8080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (1994) Lysis and the interaction between free phages and infected cells. In: Karam JD, Kutter E, Carlson K, Guttman B (eds) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 397–405

    Google Scholar 

  • Abedon ST (1999) Bacteriophage T4 resistance to lysis-inhibition collapse. Genet Res 74:1–11

    Google Scholar 

  • Abedon ST (2000) The murky origin of Snow White and her T-even dwarfs. Genetics 155:481–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2011) Facilitation of CRISPR adaptation. Bacteriophage 1(3):179–181

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2006) Phage ecology. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 37–46

    Google Scholar 

  • Abedon ST (2008) Phages, ecology, evolution. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 1–28

    Google Scholar 

  • Abedon ST (2009a) Bacteriophage evolution and ecology. Adv Appl Microbiol 67:1–45

    CAS  PubMed  Google Scholar 

  • Abedon ST (2009b) Bacteriophage intraspecific cooperation and defection. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, Hauppauge/New York, pp 191–215

    Google Scholar 

  • Abedon ST (2009c) Disambiguating bacteriophage pseudolysogeny: an historical analysis of lysogeny, pseudolysogeny, and the phage carrier state. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, Hauppauge/New York, pp 285–307

    Google Scholar 

  • Abedon ST (2009d) Impact of phage properties on bacterial survival. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, Hauppauge/New York, pp 217–235

    Google Scholar 

  • Abedon ST (2009e) Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis 6:807–815

    PubMed  Google Scholar 

  • Abedon ST (2011a) Bacteriophages and biofilms: ecology, phage therapy, plaques. Nova Science Publishers, Hauppauge/New York

    Google Scholar 

  • Abedon ST (2011b) Communication among phages, bacteria, and soil environments. Soil Biol 23:37–65

    CAS  Google Scholar 

  • Abedon ST (2011c) Communication among phages, bacteria, and soil environments. In: Witzany G (ed) Biocommunication of soil microorganisms. Springer, New York, pp 37–65

    Google Scholar 

  • Abedon ST (2012a) Bacterial ‘immunity’ against bacteriophages. Bacteriophage 2:50–54

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2012b) Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities. Viruses 4:663–687

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2014) Bacteriophages as drugs: the pharmacology of phage therapy. In: Borysowski J, Miedzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, pp 69–100

    Google Scholar 

  • Abedon ST (2015a) Bacteriophage secondary infection. Virol Sin 30:3–10

    CAS  PubMed  Google Scholar 

  • Abedon ST (2015b) Ecology of anti-biofilm agents I. antibiotics versus bacteriophages. Pharmaceuticals 8:525–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2015c) Ecology of anti-biofilm agents II. Bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals (Basel) 8(3):559–589. https://doi.org/10.3390/ph8030559

    Article  CAS  Google Scholar 

  • Abedon ST (2015d) Phage therapy of pulmonary infections. Bacteriophage 5:e1020260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2016) Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett 363:fnv246

    PubMed  Google Scholar 

  • Abedon ST (2017a) Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiol 3:649–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2017b) Bacteriophage clinical use as antibactertial “drugs”: utility, precedent. Microbiol Spectr 5:BAD-0003-2016

    Google Scholar 

  • Abedon ST (2017c) Commentary: communication between viruses guides lysis-lysogeny decisions. Front Microbiol 8:983

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2017d) Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol 3:186–226

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2018a) Bacteriophage-mediated biocontrol of wound infections, and ecological exploitation of biofilms by phages. In: Shiffman M (ed) Recent clinical techniques, results, and research in wounds. Springer, New York

    Google Scholar 

  • Abedon ST (2018b) Phage therapy: various perspectives on how to improve the art. Methods Mol Biol 1734:113–127

    CAS  PubMed  Google Scholar 

  • Abedon ST (2018c) Viruses of domain archaea. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 167–192

    Google Scholar 

  • Abedon ST (2019a) Look who’s talking: T-even phage lysis inhibition, the granddaddy of virus-virus intercellular communication research. Viruses 11:E951

    Google Scholar 

  • Abedon ST (2019b) Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics 8:182

    CAS  PubMed Central  Google Scholar 

  • Abedon ST (2019c) Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv Drug Deliv Rev 145:18–39

    CAS  PubMed  Google Scholar 

  • Abedon ST, Culler RR (2007) Bacteriophage evolution given spatial constraint. J Theor Biol 248:111–119

    PubMed  Google Scholar 

  • Abedon ST, Duffy S, Turner PE (2009) Bacteriophage ecology. In: Schaecter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 42–57

    Google Scholar 

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85

    Google Scholar 

  • Abedon ST, LeJeune JT (2005) Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinformatics Online 1:97–110

    CAS  Google Scholar 

  • Abedon ST, Murray KL (2013) Archaeal viruses, not archaeal phages: an archaeological dig. Archaea 2013:251245

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    CAS  PubMed  Google Scholar 

  • Abedon ST, Yin J (2008) Impact of spatial structure on phage population growth. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 94–113

    Google Scholar 

  • Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. Methods Mol Biol 501:161–174

    CAS  PubMed  Google Scholar 

  • Anca MS, Dwayne RR, Steffanie AS (2019) Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Current Opinion in Microbiology 51:46–50

    Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    CAS  PubMed  Google Scholar 

  • Appunu C, Dhar B (2008) Isolation and symbiotic characteristics of two Tn5-derived phage-resistant Bradyrhizobium japonicum strains that nodulate soybean. Curr Microbiol 57:212–217

    CAS  PubMed  Google Scholar 

  • Argov T, Azulay G, Pasechnek A, Stadnyuk O, Ran-Sapir S, Borovok I, Sigal N, Herskovits AA (2017) Temperate bacteriophages as regulators of host behavior. Curr Opin Microbiol 38:81–87

    CAS  PubMed  Google Scholar 

  • Aslam S, Courtwright AM, Koval C, Lehman SM, Morales S, Langlais Furr CL, Rosas F, Brownstein MJ, Fackler JR, Sisson BM, Biswas B, Henry M, Luu T, Bivens BN, Hamilton T, Duplessis C, Logan C, Law N, Yung G, Turowski J, Anesi J, Strathdee SA, Schooley RT (2019a) Early clinical experience of bacteriophage therapy in three lung transplant recipients. Am J Transplant 19(9):2631–2639

    CAS  PubMed  Google Scholar 

  • Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT (2019b) Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transplant 38:475–476

    PubMed  Google Scholar 

  • Aviram I, Rabinovitch A (2008) Dynamical types of bacteria and bacteriophages interaction: shielding by debris. J Theor Biol 251:121–136

    CAS  PubMed  Google Scholar 

  • Avlund M, Dodd IB, Semsey S, Sneppen K, Krishna S (2009) Why do phage play dice? J Virol 83:11416–11420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azam AH, Tanji Y (2019) Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 103:2121–2131

    CAS  PubMed  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    CAS  PubMed  Google Scholar 

  • Azuaga MJ, Munoz J, Gonzalez F, Arias JM (1990) Isolation and characterization of bacteriophages from Myxococcus virescens. Microbios 61:83–88

    Google Scholar 

  • Bales RC, Li S, Maguire KM, Yahya MT, Gerba CP, Harvey RW (1995) Virus and bacteria transport in a sandy aquifer, Cape Cod, MA. Ground Water 33:653–661

    CAS  Google Scholar 

  • Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57

    CAS  PubMed  Google Scholar 

  • Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS, Salamon P, Youle M, Rohwer F (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berleman JE, Chumley T, Cheung P, Kirby JR (2006) Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 188:5888–5895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berngruber TW, Lion S, Gandon S (2013) Evolution of suicide as a defence strategy against pathogens in a spatially structured environment. Ecol Lett 16:446–453

    PubMed  Google Scholar 

  • Bettarel Y, Sime-Ngando T, Amblard C, Bouvy M (2005) Low consumption of virus-sized particles by heterotrophic nanoflagellates in two lakes of the French Massif central. Aquat Microb Ecol 39:205–209

    Google Scholar 

  • Bixby RL, O’Brien DJ (1979) Influence of fulvic acid on bacteriophage adsorption and complexation in soil. Appl Environ Microbiol 38:840–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blasdel BG, Abedon ST (2017) Superinfection immunity. In: Reference module in life sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.90021-9

  • Blokesch M (2016) Natural competence for transformation. Curr Biol 26:3255

    CAS  PubMed  Google Scholar 

  • Boots M, Mealor M (2007) Local interactions select for lower pathogen infectivity. Science (New York, NY) 315:1284–1286

    CAS  Google Scholar 

  • Boyd JS (1951) Observations on the relationship of symbiotic and lytic bacteriophage. J Pathol Bacteriol 63:445–457

    CAS  PubMed  Google Scholar 

  • Bragg RR, Meyburgh CM, Lee JY, Coetzee M (2018) Potential treatment options in a post-antibiotic era. In: Infectious diseases and nanomedicine III. Springer, Singapore, pp 51–61

    Google Scholar 

  • Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330

    CAS  PubMed  Google Scholar 

  • Brauner A, Shoresh N, Fridman O, Balaban NQ (2017) An experimental framework for quantifying bacterial tolerance. Biophys J 112:2664–2671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    CAS  PubMed  Google Scholar 

  • Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine MN, Fontaine-Aupart MP (2008) Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol 74:2135–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brockhurst MA, Morgan AD, Fenton A, Buckling A (2007) Experimental coevolution with bacteria and phage. The Pseudomonas fluorescens – Φ2 model system. Infect Genet Evol 7:547–552

    CAS  PubMed  Google Scholar 

  • Brooks JP, Tanner BD, Josephson KL, Gerba CP, Pepper IL (2004) Bioaerosols from the land application of biosolids in the desert southwest USA. Water Sci Technol 50:7–12

    CAS  PubMed  Google Scholar 

  • Brooks K (1965) Studies in the physiological genetics of some supporessor-sensitive mutants of bacteriophages lambda. Virology 26:489–499

    CAS  PubMed  Google Scholar 

  • Brown EW, LeClerc JE, Kotewicz ML, Cebula TA (2001) Three R’s of bacterial evolution: how replication, repair, and recombination frame the origin of species. Environ Mol Mutagen 38:248–260

    CAS  PubMed  Google Scholar 

  • Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052

    CAS  PubMed  Google Scholar 

  • Brunel AS, Guery B (2017) Multidrug resistant (or antimicrobial-resistant) pathogens – alternatives to new antibiotics? Swiss Med Wkly 147:w14553

    PubMed  Google Scholar 

  • Brüssow H, Desiere F (2006) Evolution of tailed phages-insights from comparative phage genomics. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 26–36

    Google Scholar 

  • Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM (2016) Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol 7:1391

    PubMed  PubMed Central  Google Scholar 

  • Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond B Biol Sci 269:931–936

    Google Scholar 

  • Bull JJ, Christensen KA, Scott C, Jack BR, Crandall CJ, Krone SM (2018) Phage-bacterial dynamics with spatial structure: self organization around phage sinks can promote increased cell densities. Antibiotics (Basel) 7(1):pii: E8

    Google Scholar 

  • Burrowes B, Harper DR (2012) Phage therapy of non-wound infections. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford

    Google Scholar 

  • Burrowes BH, Molineux IJ, Fralick JA (2019) Directed in vitro evolution of therapeutic bacteriophages: the Appelmans protocol. Viruses 11:241

    CAS  PubMed Central  Google Scholar 

  • Campbell A (1994) Comparative molecular biology of lambdoid phages. Annu Rev Microbiol 48:193–222

    CAS  PubMed  Google Scholar 

  • Campbell AM (2006) General aspects of lysogeny. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 66–73

    Google Scholar 

  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravorty P (2018) What is a signal? IEEE Signal Process Mag 35:175–177

    Google Scholar 

  • Chan BK, Abedon ST (2012) Bacteriophage adaptation, with particular attention to issues of phage host range. In: Quiberoni A, Reinheimer J (eds) Bacteriophages in dairy processing. Nova Science Publishers, Hauppauge/New York, pp 25–52

    Google Scholar 

  • Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99

    CAS  PubMed  Google Scholar 

  • Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D (2018) Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 1:60–66

    Google Scholar 

  • Chang RYK, Wallin M, Lin Y, Leung SSY, Wang H, Morales S, Chan HK (2018) Phage therapy for respiratory infections. Adv Drug Deliv Rev 133:76–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay D, Puls RW (2000) Forces dictating colloidal interactions between viruses and soil. Chemosphere 41:1279–1286

    CAS  PubMed  Google Scholar 

  • Chen Y, Golding I, Sawai S, Guo L, Cox EC (2005) Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol 3:e229

    PubMed  PubMed Central  Google Scholar 

  • Christie GE, Allison HA, Kuzio J, McShan M, Waldor MK, Kropinski AM (2012) Prophage-induced changes in cellular cytochemistry and virulence. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 33–60

    Google Scholar 

  • Chróst RJ (1991) Aquatic microbial ecology. Springer, New York

    Google Scholar 

  • Clark JM (2005) Microbe-laden aerosols. Microbiology Today, November, pp 172–173

    Google Scholar 

  • Cochran PK, Kellogg CA, Paul JH (1998) Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar Ecol Prog Ser 164:125–133

    CAS  Google Scholar 

  • Cohan FM, Roberts MS, King EC (1991) The potential for genetic exchange by transformation within a natural-population of Bacillus subtilis. Evol Int J Org Evol 45:1393–1421

    Google Scholar 

  • Colavecchio A, Cadieux B, Lo A, Goodridge LD (2017) Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family – a review. Front Microbiol 8:1108

    PubMed  PubMed Central  Google Scholar 

  • Colegrave N (2002) Sex releases the speed limit on evolution. Nature (London) 420:664–666

    CAS  Google Scholar 

  • Curtright AJ, Abedon ST (2011) Phage therapy: emergent property pharmacology. J Bioanalyt Biomed S3:010

    Google Scholar 

  • Darch SE, Kragh KN, Abbott EA, Bjarnsholt T, Bull JJ, Whiteley M (2017) Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model. MBio 8(2):pii: e00240-17

    Google Scholar 

  • David HL, Clavel S, Clement F, Moniz-Pereira J (1980) Effects of antituberculosis and antileprosy drugs on mycobacteriophage D29 growth. Antimicrob Agents Chemother 18:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies CM, Logan MR, Rothwell VJ, Krogh M, Ferguson CM, Charles K, Deere DA, Ashbolt NJ (2006) Soil inactivation of DNA viruses in septic seepage. J Appl Microbiol 100:365–374

    CAS  PubMed  Google Scholar 

  • Davis JA, Farrah SR, Wilkie AC (2006) Adsorption of viruses to soil: impact of anaerobic treatment. Water Sci Technol 54:161–167

    CAS  PubMed  Google Scholar 

  • Day MJ (2004) Transformation. In: Miller RV, Day MJ (eds) Microbial evolution: gene establishment, survival, and exchange. ASM Press, Washington, DC, pp 158–172

    Google Scholar 

  • Day MJ, Miller RV (2008) Phage ecology of terrestrial environments. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 281–301

    Google Scholar 

  • de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE (2019) Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol 27:51–63

    PubMed  Google Scholar 

  • De Sordi L, Lourenco M, Debarbieux L (2019) “I will survive”: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10:92–99

    PubMed  Google Scholar 

  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennehy JJ, Friedenberg NA, Yang YW, Turner PE (2006) Bacteriophage migration via nematode vectors: host-parasite-consumer interactions in laboratory microcosms. Appl Environ Microbiol 72:1974–1979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Munoz SL, Koskella B (2014) Bacteria-phage interactions in natural environments. Adv Appl Microbiol 89:135–183

    PubMed  Google Scholar 

  • Diggle SP, Gardner A, West SA, Griffin AS (2007) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond Ser B Biol Sci 362:1241–1249

    CAS  Google Scholar 

  • Doermann AH (1948) Lysis and lysis inhibition with Escherichia coli bacteriophage. J Bacteriol 55:257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    CAS  PubMed  Google Scholar 

  • Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359(6379):pii: eaar4120

    Google Scholar 

  • Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y, Zhou D, Fu X, Qi S, Zhu X, Yao S, Xu H, Nie C, Liang Z, Yang S, Wei Y, Cheng W (2018) Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Nat Microbiol 3:1285–1294

    CAS  PubMed  Google Scholar 

  • Drake JW, Ripley LS (1994) Induced mutagenesis and isolation of T4 mutants. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM Press, Washington, pp 447–451

    Google Scholar 

  • Duboise SM, Moore BE, Sorber CA, Sagik BP (1979) Viruses in soil systems. In: Isenberg HD (ed) CRC critical reviews in microbiology. CRC Press, Boca Raton, pp 245–285

    Google Scholar 

  • Duffy S, Turner PE (2008) Introduction to phage evolutionary biology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 147–176

    Google Scholar 

  • Duffy S, Turner PE, Burch CL (2006) Pleiotropic costs of niche expansion in the RNA bacteriophage ϕ6. Genetics 172:751–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dy RL, Richter C, Salmond GP, Fineran PC (2014) Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol 1:307–331

    PubMed  Google Scholar 

  • Elena SF, Sanjuán R (2003) Climb every mountain? Science (New York, NY) 302:2074–2075

    CAS  Google Scholar 

  • Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R (2017) Communication between viruses guides lysis-lysogeny decisions. Nature (London) 541:488–493

    CAS  Google Scholar 

  • Eriksen RS, Svenningsen SL, Sneppen K, Mitarai N (2018) A growing microcolony can survive and support persistent propagation of virulent phages. Proc Natl Acad Sci U S A 115:337–342

    CAS  PubMed  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    CAS  PubMed  Google Scholar 

  • Espeland EM, Lipp EK, Huq A, Colwell RR (2004) Polylysogeny and prophage induction by secondary infection in Vibrio cholerae. Environ Microbiol 6:760–763

    CAS  PubMed  Google Scholar 

  • Evans KJ, Hobley L, Lambert C, Sockett RE (2007) Bdellovibrio: lone hunter “cousin” of the “pack hunting” myxobacteria. In: Whitworth DE (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC, pp 351–362

    Google Scholar 

  • Fellous S, Salvaudon L (2009) How can your parasites become your allies? Trends Parasitol 25:62–66

    PubMed  Google Scholar 

  • Ferguson CM, Davies CM, Kaucner C, Krogh M, Rodehutskors J, Deere DA, Ashbolt NJ (2007) Field scale quantification of microbial transport from bovine faeces under simulated rainfall events. J Water Health 5:83–95

    PubMed  Google Scholar 

  • Fernández L, Rodríguez A, García P (2018) Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J 12:1171–1179

    PubMed  PubMed Central  Google Scholar 

  • Ferry T, Leboucher G, Fevre C, Herry Y, Conrad A, Josse J, Batailler C, Chidiac C, Medina M, Lustig S, Laurent F (2018) Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infect Dis 5:ofy269

    PubMed  PubMed Central  Google Scholar 

  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25(Suppl 7):S27–S33

    Google Scholar 

  • Fisher MB, Love DC, Schuech R, Nelson KL (2011) Simulated sunlight action spectra for inactivation of MS2 and PRD1 bacteriophages in clear water. Environ Sci Technol 45:9249–9255

    CAS  PubMed  Google Scholar 

  • Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol 15:453–464

    CAS  PubMed  Google Scholar 

  • Fitch WM (2000) Homology a personal view on some of the problems. Trends Genet 16:227–231

    CAS  PubMed  Google Scholar 

  • Flannery J, Rajko-Nenow P, Keaveney S, O’Flaherty V, Dore W (2013) Simulated sunlight inactivation of norovirus and FRNA bacteriophage in seawater. J Appl Microbiol 115(3):915–922

    CAS  PubMed  Google Scholar 

  • Forde SE, Thompson JN, Bohannan BJM (2004) Adaptation varies through space and time in a coevolving host–parasitoid interaction. Nature (London) 431:841–844

    CAS  Google Scholar 

  • Fry BA (1959) Conditions for the infection of Escherichia coli with lambda phage and for the establishment of lysogeny. J Gen Microbiol 21:676–684

    CAS  PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature (London) 399:541–548

    CAS  Google Scholar 

  • Fukuyo M, Sasaki A, Kobayashi I (2012) Success of a suicidal defense strategy against infection in a structured habitat. Sci Rep 2:238

    PubMed  PubMed Central  Google Scholar 

  • Gallego Del SF, Penades JR, Marina A (2019) Deciphering the molecular mechanism underpinning phage arbitrium communication systems. Mol Cell 74:59–72

    Google Scholar 

  • Gallet R, Shao Y, Wang I-N (2009) High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol Biol 9:241

    PubMed  PubMed Central  Google Scholar 

  • Gama JA, Reis AM, Domingues I, Mendes-Soares H, Matos AM, Dionisio F (2013) Temperate bacterial viruses as double-edged swords in bacterial warfare. PLoS One 8:e59043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Roy K, Williamson KE, Srinivasiah S, Wommack KE, Radosevich M (2009) Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction. Appl Environ Microbiol 75:7142–7152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Roy K, Williamson KE, White DC, Wommack KE, Sublette KL, Radosevich M (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74:495–502

    CAS  PubMed  Google Scholar 

  • Gill JJ, Abedon ST (2003) Bacteriophage ecology and plants. APSnet feature. http://www.apsnet.org/online/feature/phages/

  • Gogarten JP (1994) Which is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages. J Mol Evol 39:541–543

    CAS  PubMed  Google Scholar 

  • González JM, Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10

    Google Scholar 

  • Gupta P, Singh HS, Shukla VK, Nath G, Bhartiya SK (2019) Bacteriophage therapy of chronic nonhealing wound: clinical study. Int J Low Extrem Wounds 18(2):171–175. https://doi.org/10.1177/1534734619835115

    Article  CAS  PubMed  Google Scholar 

  • Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penades JR, Ingmer H (2016) Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 7:13333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadas H, Einav M, Fishov I, Zaritsky A (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143:179–185

    CAS  PubMed  Google Scholar 

  • Hagens S, Habel A, Blasi U (2006) Augmentation of the antimicrobial efficacy of antibiotics by filamentous phage. Microb Drug Resist 12:164–168

    CAS  PubMed  Google Scholar 

  • Hannan S, Ready D, Jasni AS, Rogers M, Pratten J, Roberts AP (2010) Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol 59:345–349

    CAS  PubMed  Google Scholar 

  • Hansen MF, Svenningsen SL, Roder HL, Middelboe M, Burmolle M (2019) Big impact of the tiny: bacteriophage-bacteria interactions in biofilms. Trends Microbiol 27:739

    CAS  PubMed  Google Scholar 

  • Hargreaves KR, Kropinski AM, Clokie MR (2014) What does the talking?: quorum sensing signalling genes discovered in a bacteriophage genome. PLoS One 9:e85131

    PubMed  PubMed Central  Google Scholar 

  • Harms A, Diard M (2019) Crowd controlled-host quorum sensing drives phage decision. Cell Host Microbe 25:179–181

    CAS  PubMed  Google Scholar 

  • Harper DR (2013) Biological control by microorganisms. eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0000344.pub3

    Book  Google Scholar 

  • Hassen A, Jamoussi F, Saidi N, Mabrouki Z, Fakhfakh E (2003) Microbial and copper adsorption by smectitic clay – an experimental study. Environ Technol 24:1117–1127

    CAS  PubMed  Google Scholar 

  • Häusler T (2006) Viruses vs. superbugs: a solution to the antibiotics crisis. Macmillan, New York

    Google Scholar 

  • Hay ID, Lithgow T (2019) Filamentous phages: masters of a microbial sharing economy. EMBO Rep 20:e47427

    PubMed  PubMed Central  Google Scholar 

  • Heineman RH, Springman R, Bull JJ (2008) Optimal foraging by bacteriophages through host avoidance. Am Nat 171:E150–E157

    Google Scholar 

  • Hendrickx L, Hausner M, Wuertz S (2003) Natural genetic transformation in monoculture Acinetobacter sp. strain BD413 biofilms. Appl Environ Microbiol 69:1721–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix RW (2002) Bacteriophages: evolution of the majority. Theor Popul Biol 61:471–480

    PubMed  Google Scholar 

  • Hendrix RW (2008) Phage evolution. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 177–194

    Google Scholar 

  • Hendrix RW, Hatfull GF, Smith MCM (2003) Bacteriophages with tails: chasing their origins and evolution. Res Microbiol 154:253–257

    CAS  PubMed  Google Scholar 

  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508

    CAS  PubMed  Google Scholar 

  • Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci U S A 96:2192–2197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF (2002) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. In: Syvanen M, Kado CI (eds) Horizontal gene transfer. Academic, San Diego, pp 133–140

    Google Scholar 

  • Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci U S A 106:3254–3258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herskowitz I, Banuett F (1984) Interaction of phage, host, and environmental factors in governing the λ lysis-lysogeny decision. In: Chopra VL, Joshi BC, Sharma RP, Bansal HC (eds) Genetics, new frontiers: proceedings of the XV international congress of genetics, vol I. Oxford and I.B.H, New Delhi, pp 59–73

    Google Scholar 

  • Hewson I, Fuhrman JA (2003) Viriobenthos production and virioplankton sorptive scavenging. Microb Ecol 46:337–347

    CAS  PubMed  Google Scholar 

  • Hobbs Z, Abedon ST (2016) Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS Microbiol Lett 363:fnw047

    PubMed  Google Scholar 

  • Hoffman DB Jr, Rubenstein I (1968) Physical studies of lysogeny. I. Properties of intracellular parental bacteriophage DNA from λ-infected sensitive bacteria. J Mol Biol 35:375–399

    CAS  PubMed  Google Scholar 

  • Holder KK, Bull JJ (2001) Profiles of adaptation in two similar viruses. Genetics 159:1393–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:1511–1520

    PubMed  PubMed Central  Google Scholar 

  • Hoyle N, Zhvaniya P, Balarjishvili N, Bolkvadze D, Nadareishvili L, Nizharadze D, Wittmann J, Rohde C, Kutateladze M (2018) Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report. Res Microbiol 169:540–542

    CAS  PubMed  Google Scholar 

  • Hu J, Miyanaga K, Tanji Y (2010) Diffusion properties of bacteriophages through agarose gel membrane. Biotechnol Prog 26:1213–1221

    CAS  PubMed  Google Scholar 

  • Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047

    CAS  PubMed  Google Scholar 

  • Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel) 12(1):pii: E35

    Google Scholar 

  • Hyman P, Abedon ST (2018) Viruses of microorganisms. Caister Academic Press, Norwich

    Google Scholar 

  • Hyman P, Abedon ST (2008) Phage ecology of bacterial pathogenesis. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 353–385

    Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    CAS  PubMed  Google Scholar 

  • Hyman P, Abedon ST (2012) Smaller fleas: viruses of microorganisms. Scientifica 2012:734023

    PubMed  PubMed Central  Google Scholar 

  • Igler C, Abedon ST (2019) Commentary: a host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Front Microbiol 10:1171

    PubMed  PubMed Central  Google Scholar 

  • Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV (2015) Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evol Biol 15:43

    PubMed  PubMed Central  Google Scholar 

  • Ito S-I, Nishimune T, Abe M, Kimoto M, Hayashi R (1986) Bacteriocinlike killing action of a temperate bacteriophage ϕBA1 of Bacillus aneurinolyticus. J Virol 59:103–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquet S, Zhong X, Peduzzi P, Thingstad TF, Parikka KJ, Weinbauer MG (2018) Virus interactions in the aquatic world. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 115–141

    Google Scholar 

  • Jawetz E, Gunnison JB, Speck RS, Coleman VR (1951) Studies on antibiotic synergism and antagonism; the interference of chloramphenicol with the action of penicillin. AMA Arch Intern Med 87:349–359

    CAS  PubMed  Google Scholar 

  • Jiang SC, Paul JH (1996) Occurence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol Prog Ser 142:27–38

    Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joh RI, Weitz JS (2011) To lyse or not to lyse: transient-mediated stochastic fate determination in cells infected by bacteriophages. PLoS Comput Biol 7:e1002006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson LJ, Koufopanou V, Goddard MR, Hetherington R, Schafer SM, Burt A (2004) Population genetics of the wild yeast Saccharomyces paradoxus. Genetics 166:43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jolivet-Gougeon A, Bonnaure-Mallet M (2014) Biofilms as a mechanism of bacterial resistance. Drug Discov Today Technol 11:49–56

    PubMed  Google Scholar 

  • Karlovsky P (2008) Secondary metabolites in soil ecology. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 1–19

    Google Scholar 

  • Knezevic P, Sabo VA (2019) Combining bacteriophages with other antibacterial agents to combat bacteria. In: Miedzybrodzki R, Borysowski J (eds) Górski A. Phage Therapy, A Practical Approach. Springer, pp 257–293

    Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    CAS  PubMed  Google Scholar 

  • Kerr B, West J, Bohannan BJM (2008) Bacteriophage: models for exploring basic principles of ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 31–63

    Google Scholar 

  • Koch AL (1960) Encounter efficiency of coliphage-bacterium interaction. Biochim Biophys Acta 39:311–318

    Google Scholar 

  • Korona R, Levin BR (1993) Phage-mediated selection and the evolution and maintenance of restriction-modification. Evol Int J Org Evol 47:556–575

    Google Scholar 

  • Kourilsky P (1973) Lysogenization by bacteriophage lambda. I. Multiple infection and the lysogenic response. Mol Gen Genet 122:183–195

    CAS  PubMed  Google Scholar 

  • Kouzel N, Oldewurtel ER, Maier B (2015) Gene transfer efficiency in gonococcal biofilms: role of biofilm age, architecture, and pilin antigenic variation. J Bacteriol 197:2422–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krisch HM (2003) The view from Les Treilles on the origins, evolution and diversity of viruses. Res Microbiol 154:227–229

    PubMed  Google Scholar 

  • Krone SM, Abedon ST (2008) Modeling phage plaque growth. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 415–438

    Google Scholar 

  • Kutter E (2005) Phage therapy: bacteriophages as natural, self-limiting antibiotics. In: Pizzorno W (ed) Textbook of natural medicine, 3rd edn. Churchill Livingston, St. Louis, pp 1147–1161

    Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    CAS  PubMed  Google Scholar 

  • Kutter E, Kellenberger E, Carlson K, Eddy S, Neitzel J, Messinger L, North J, Guttman B (1994) Effects of bacterial growth conditions and physiology on T4 infection. In: Karam JD, Kutter E, Carlson K, Guttman B (eds) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 406–418

    Google Scholar 

  • Kutter EM, Kuhl SJ, Abedon ST (2015) Re-establishing a place for phage therapy in western medicine. Future Microbiol 10:685–688

    CAS  PubMed  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    CAS  PubMed  Google Scholar 

  • Lacroix-Gueu P, Briandet R, Lévêque-Fort S, Bellon-Fontaine MN, Fountaine-Aupart MP (2005) In situ measurements of viral particles diffusion inside mucoid biofilms. C R Biol 328:1065–1072

    CAS  PubMed  Google Scholar 

  • Law N, Logan C, Yung G, CLL F, Lehman SM, Morales S, Rosas F, Gaidamaka A, Bilinsky I, Grint P (2019) Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 47:665–668

    PubMed  Google Scholar 

  • Lawrence JG, Hendrickson H (2003) Lateral gene transfer: when will adolescence end? Mol Microbiol 50:739–749

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Hendrix RW, Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol 9:535–540

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    CAS  PubMed  Google Scholar 

  • Lehman SM (2018) Bacteriophage diversity. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 145–165

    Google Scholar 

  • Lemire S, Figueroa-Bossi N, Bossi L (2011) Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PLoS Genet 7:e1002149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin BR (1988) Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond Ser B Biol Sci 319:459–472

    CAS  Google Scholar 

  • Levin BR, Bergstrom CT (2000) Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci U S A 97:6981–6985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2:166–173

    CAS  PubMed  Google Scholar 

  • Levine M (1957) Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology 3:22–41

    CAS  PubMed  Google Scholar 

  • Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieb M (1953) The establishment of lysogenicity in Escherichia coli. J Bacteriol 65:642–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Paff ML, Molineux IJ, Bull JJ (2018) Antibiotic therapy using phage depolymerases: robustness across a range of conditions. Viruses 10:pii: E622

    Google Scholar 

  • Little JW (2005) Lysogeny, prophage induction, and lysogenic conversion. In: Waldor MK, Friedman DI, Adhya SL (eds) Phages: their role in bacterial pathogenesis and biotechnology. ASM Press, Washington, DC, pp 37–54

    Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    PubMed  PubMed Central  Google Scholar 

  • Loc-Carrillo C, Wu S, Beck JP (2012) Phage therapy of wounds and related purulent infections. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 185–202

    Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Los J, Zielinka S, Krajewska A, Filipiak M, Malachowska A, Kwasnicka K, Lobocka MB, Szkop U, Los M (2019) Temperate phages, prophages and lysogeny. In: Harper DR, Abedon ST, Burrowes BH, McConville M (eds) Bacteriophages: biology, technology, therapy. Springer, Cham

    Google Scholar 

  • Los M, Kuzio J, McConnell MR, Kropinski AM, Wegrzyn G, Christie GE (2010) Lysogenic conversion in bacteria of importance to the food industry. In: Sabour PM, Griffiths MW (eds) Bacteriophages in the control of food- and waterborne pathogens. ASM Press, Washington, DC, pp 157–198

    Google Scholar 

  • Los M, Wegrzyn G (2012) Pseudolysogeny. Adv Virus Res 82:339–349

    CAS  PubMed  Google Scholar 

  • Lwoff A (1953) Lysogeny. Bacteriol Rev 17:269–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macia MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20:981–990

    CAS  PubMed  Google Scholar 

  • Martens E, Demain AL (2017) The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo) 70:520–526

    CAS  Google Scholar 

  • Mavrich TN, Hatfull GF (2017) Bacteriophage evolution differs by host, lifestyle and genome. Nat Microbiol 2:17112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrich TN, Hatfull GF (2019) Evolution of superinfection immunity in Cluster A mycobacteriophages. MBio 10:e00971–e00919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell KL (2019) Phages tune in to host cell quorum sensing. Cell 176:7–8

    CAS  PubMed  Google Scholar 

  • McKay LD, Harton AD, Wilson GV (2002) Influence of flow rate on transport of bacteriophage in shale saprolite. J Environ Qual 31:1095–1105

    CAS  PubMed  Google Scholar 

  • Miller RV, Day M (2008) Contribution of lysogeny, pseudolysogeny, and starvation to phage ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 114–143

    Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    CAS  PubMed  Google Scholar 

  • Morita RY (1997) Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman and Hall Ltd, London

    Google Scholar 

  • Morrisette T, Kebriaei R, Lev KL, Morales S, Rybak MJ (2020) Bacteriophage Therapeutics: A Primer for Clinicians on Phage‐Antibiotic Combinations. Pharmacotherapy: The Journal ofHuman Pharmacology and Drug Therapy 40 (2):153–168

    Google Scholar 

  • Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects of size, shape, motion, and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116

    Google Scholar 

  • Murray AG, Jackson GA (1993) Viral dynamics II: a model of the interaction of ultraviolet light and mixing processes on virus survival in seawater. Mar Ecol Prog Ser 102:105–114

    Google Scholar 

  • Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191

    CAS  PubMed  Google Scholar 

  • Ocampo PS, Lazar V, Papp B, Arnoldini M, Abel Zur WP, Busa-Fekete R, Fekete G, Pal C, Ackermann M, Bonhoeffer S (2014) Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother 58:4573–4582

    PubMed  PubMed Central  Google Scholar 

  • Ogunseitan OA (2008) Genetic transduction in freshwater ecosystems. Freshw Biol 53:1228–1239

    Google Scholar 

  • Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 34:877–886

    CAS  PubMed  Google Scholar 

  • Oppenheim VA, Willsky AS (1997) Signals & systems. Prentice Hall, Engelwood Cliffs

    Google Scholar 

  • Pantastico-Caldas M, Duncan KE, Istock CA, Bell JA (1992) Population dynamics of bacteriophage and Bacillus subtilis in soil. Ecology 73:1888–1902

    Google Scholar 

  • Paolozzi L, Ghelardini P (2006) The bacteriophage Mu. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 469–496

    Google Scholar 

  • Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2:579–589

    CAS  PubMed  Google Scholar 

  • Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S Jr, Kriakov J, Lawrence JG, Jacobs WR Jr, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182

    CAS  PubMed  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    CAS  Google Scholar 

  • Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151

    CAS  PubMed  Google Scholar 

  • Popa O, Dagan T (2011) Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 14:615–623

    CAS  PubMed  Google Scholar 

  • Popa O, Landan G, Dagan T (2017) Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J 11:543–554

    CAS  PubMed  Google Scholar 

  • Presloid JB, Ebendick-Corp ZS, Novella IS (2008) Antagonistic pleiotropy involving promoter sequences in a virus. J Mol Biol 382:342–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovitch A, Aviram I, Zaritsky A (2003) Bacterial debris – an ecological mechanism for coexistence of bacteria and their viruses. J Theor Biol 224:377–383

    PubMed  Google Scholar 

  • Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA (2018) Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J 12:1154–1162

    Google Scholar 

  • Reteno DGI, Bajrai LH, Aherfi S, Colson P, La Scola B (2018) Protozoal giant viruses. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 245–269

    Google Scholar 

  • Reyes-Robles T, Dillard RS, Cairns LS, Silva-Valenzuela CA, Housman M, Ali A, Wright ER, Camilli A (2018) Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J Bacteriol 200:e00792–e00717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751

    PubMed  Google Scholar 

  • Rodriguez-Verdugo A, Carrillo-Cisneros D, Gonzalez-Gonzalez A, Gaut BS, Bennett AF (2014) Different tradeoffs result from alternate genetic adaptations to a common environment. Proc Natl Acad Sci U S A 111:12121–12126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352

    PubMed  PubMed Central  Google Scholar 

  • Samson JE, Magadan AH, Sabri M, Moineau S (2013) Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 11:675–687

    CAS  PubMed  Google Scholar 

  • Scanlan PD, Buckling A, Hall AR (2015) Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research. Bacteriophage 5:e1050153

    PubMed  PubMed Central  Google Scholar 

  • Schneider CL (2017) Bacteriophage-mediated horizontal gene transfer: transduction. In: Harper DR, Abedon ST, Burrowes B, McConville M (eds) Bacteriophages: biology, technology, therapy. Springer, New York City. https://link.springer.com/referenceworkentry/10.1007/978-3-319-40598-8_4-1

    Google Scholar 

  • Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L, McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Cilwa KE, Regeimbal JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R, Hamilton T (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954–e00917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segall AM, Roach DR, Strathdee SA (2019) Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Current Opinion in Microbiology 51:46–50

    Google Scholar 

  • Short SM, Staniewski MA, Chaban YV, Long AM, Wang D (2018) Diversity of viruses infecting eukaryotic algae. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 211–243

    Google Scholar 

  • Sillankorva S, Azeredo J (2014) The use of bacteriophages and bacteriophage-derived enzymes for clinically relevant biofilm control. In: Borysowski J, Miedzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  • Silpe JE, Bassler BL (2019) A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176:268–280

    CAS  PubMed  Google Scholar 

  • Silver-Mysliwiec T, Bramucci MG (1990) Bacteriophage-enhanced sporulation: comparison of the spore converting bacteriophages PMB12 and SP10. J Bacteriol 172:1948–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons M, Drescher K, Nadell CD, Bucci V (2017) Phage mobility is a core determinant of phage-bacteria coexistence in biofilms. ISME J 12:531–543

    PubMed  PubMed Central  Google Scholar 

  • Sisler FD (1940) The transmission of bacteriophage by mosquitoes. University of Maryland, College Park

    Google Scholar 

  • Six E (1961) Inheritance of prophage P2 in superinfection experiments. Virology 14:220–233

    Google Scholar 

  • Sonenshein AL (2006) Bacteriophages: how bacterial spores capture and protect phage DNA. Curr Biol 16:R14–R16

    CAS  PubMed  Google Scholar 

  • Song I, Choi CY, O’Shaughnessy S, Gerba CP (2005) Effects of temperature and moisture on coliphage PRD-1 survival in soil. J Food Prot 68:2118–2122

    PubMed  Google Scholar 

  • Stanley SY, Maxwell KL (2018) Phage-encoded anti-CRISPR defenses. Annu Rev Genet 52:445–464

    CAS  PubMed  Google Scholar 

  • Stent GS, Wollman EL (1952) On the two step nature of bacteriophage adsorption. Biochim Biophys Acta 8:260–269

    CAS  PubMed  Google Scholar 

  • Stewart FM, Levin BR (1984) The population biology of bacterial viruses: why be temperate. Theor Popul Biol 26:93–117

    CAS  PubMed  Google Scholar 

  • Sumby P, Smith MCM (2002) Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol Microbiol 44:489–500

    CAS  PubMed  Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    CAS  PubMed  Google Scholar 

  • Tagliaferri TL, Jansen M, Horz H (2019) Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Frontiers in Cellular and Infection Microbiology 9:22

    Google Scholar 

  • Tan JSH, Reanney DC (1976) Interactions between bacteriophages and bacteria in soil. Soil Biol Biochem 8:145–150

    Google Scholar 

  • Thingstad TF, Bratbak G, Heldal M (2008) Aquatic phage ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 251–280

    Google Scholar 

  • Turner PE, Duffy S (2008) Evolutionary ecology of multi-phage infections. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 195–216

    Google Scholar 

  • Vainio EJ, Hantula J (2018) Fungal viruses. In: Hyman P, Abedon ST (eds) Viruses of microorganisms. Caister Academic Press, Norwich, pp 193–209

    Google Scholar 

  • Van Cuyk S, Siegrist RL (2007) Virus removal within a soil infiltration zone as affected by effluent composition, application rate, and soil type. Water Res 41:699–709

    PubMed  Google Scholar 

  • Wang BY, Chi B, Kuramitsu HK (2002) Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol Immunol 17:108–112

    CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Webb V, Leduc E, Spiegelman GB (1982) Burst size of bacteriophage SP82 as a function of growth rate of its host Bacillus subtilis. Can J Microbiol 28:1277–1280

    CAS  PubMed  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    CAS  PubMed  Google Scholar 

  • Weinbauer MG, Suttle CA (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol 18:217–225

    Google Scholar 

  • Weledji EP, Weledji EK, Assob JC, Nsagha DS (2017) Pros, cons and future of antibiotics. New Horiz Transl Med 4:9–14

    Google Scholar 

  • Wienhold SM, Lienau J, Witzenrath M (2019) Towards inhaled phage therapy in Western Europe. Viruses 11:295

    CAS  PubMed Central  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49:781–788

    Google Scholar 

  • Wilkinson JF (1958) The extracellular polysaccharides of bacteria. Bacteriol Rev 22:46–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evol Int J Org Evol 11:398–411

    Google Scholar 

  • Williams ST, Lanning S (1984) Studies of the ecology of streptomycete phage in soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic, London, pp 473–483

    Google Scholar 

  • Williams ST, Mortimer AM, Manchester L (1987) Ecology of soil bacteriophages. In: Goyal SM, Gerba CP, Bitton G (eds) Phage ecology. Wiley, New York, pp 157–179

    Google Scholar 

  • Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 74:42–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witzany G (2017) Key levels of biocommunication. In: Biocommunication: sign-mediated interactions between cells and organisms. World Scientific, London, pp 37–61

    Google Scholar 

  • Witzany G (2019) Communication as the main characteristic of life. In: Handbook of astrobiology. CRC Press, Boca Raton, pp 91–105

    Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wommack KE, Hill RT, Muller TA, Colwell RR (1996) Effects of sunlight on bacteriophage viability and structure. Appl Environ Microbiol 62:1336–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong TP, Byappanahalli M, Yoneyama B, Ray C (2008) An evaluation of the mobility of pathogen indicators, Escherichia coli and bacteriophage MS-2, in a highly weathered tropical soil under unsaturated conditions. J Water Health 6:131–140

    CAS  PubMed  Google Scholar 

  • Wright A, Hawkins CH, Anggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357

    CAS  PubMed  Google Scholar 

  • Wuertz S, Hendrickx L, Kuehn M, Rodenacker K, Hausner M (2001) In situ quantification of gene transfer in biofilms. Methods Enzymol 336:129–143

    CAS  PubMed  Google Scholar 

  • Yin J, McCaskill JS (1992) Replication of viruses in a growing plaque: a reaction-diffusion model. Biophys J 61:1540–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeph LR, Casida LJ (1986) Gram-negative versus gram-positive (actinomycete) nonobligate bacterial predators of bacteria in soil. Appl Environ Microbiol 52:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abedon, S.T. (2020). Phage-Phage, Phage-Bacteria, and Phage-Environment Communication. In: Witzany, G. (eds) Biocommunication of Phages. Springer, Cham. https://doi.org/10.1007/978-3-030-45885-0_2

Download citation

Publish with us

Policies and ethics